Please note, this is a STATIC archive of website www.tutorialspoint.com from 11 May 2019, cach3.com does not collect or store any user information, there is no "phishing" involved.
Tutorialspoint

1 Answer
Sharon Christine

In an undirected graph, the Hamiltonian path is a path, that visits each vertex exactly once, and the Hamiltonian cycle or circuit is a Hamiltonian path, that there is an edge from the last vertex to the first vertex.

In this problem, we will try to determine whether a graph contains a Hamiltonian cycle or not. And when a Hamiltonian cycle is present, also print the cycle.

Input and Output

Input:
The adjacency matrix of a graph G(V, E).

Output:
The algorithm finds the Hamiltonian path of the given graph. For this case it is (0, 1, 2, 4, 3, 0). This graph has some other Hamiltonian paths.
If one graph has no Hamiltonian path, the algorithm should return false.

Algorithm

isValid(v, k)

Input: Vertex v and position k.

Output: Checks whether placing v in the position k is valid or not.

Begin
   if there is no edge between node(k-1) to v, then
      return false
   if v is already taken, then
      return false
   return true; //otherwise it is valid
End

cycleFound(node k)

Input: node of the graph.

Output: True when there is a Hamiltonian Cycle, otherwise false.

Begin
   if all nodes are included, then
      if there is an edge between nodes k and 0, then
         return true
      else
         return false;

   for all vertex v except starting point, do
      if isValid(v, k), then //when v is a valid edge
         add v into the path
         if cycleFound(k+1) is true, then
            return true
         otherwise remove v from the path
   done
   return false
End

Source Code (C++)

#include<iostream>
#define NODE 5
using namespace std;

int graph[NODE][NODE] = {
   {0, 1, 0, 1, 0},
   {1, 0, 1, 1, 1},
   {0, 1, 0, 0, 1},
   {1, 1, 0, 0, 1},
   {0, 1, 1, 1, 0},
};
   
/* int graph[NODE][NODE] = {
   {0, 1, 0, 1, 0},
   {1, 0, 1, 1, 1},
   {0, 1, 0, 0, 1},
   {1, 1, 0, 0, 0},
   {0, 1, 1, 0, 0},
}; */

int path[NODE];

void displayCycle() {
   cout<<"Cycle: ";

   for (int i = 0; i < NODE; i++)
      cout << path[i] << " ";
   cout << path[0] << endl;      //print the first vertex again
}

bool isValid(int v, int k) {
   if (graph [path[k-1]][v] == 0)   //if there is no edge
      return false;

   for (int i = 0; i < k; i++)   //if vertex is already taken, skip that
      if (path[i] == v)
         return false;
   return true;
}

bool cycleFound(int k) {
   if (k == NODE) {             //when all vertices are in the path
      if (graph[path[k-1]][ path[0] ] == 1 )
         return true;
      else
         return false;
   }

   for (int v = 1; v < NODE; v++) {       //for all vertices except starting point
      if (isValid(v,k)) {                //if possible to add v in the path
         path[k] = v;
         if (cycleFound (k+1) == true)
            return true;
         path[k] = -1;               //when k vertex will not in the solution
      }
   }
   return false;
}

bool hamiltonianCycle() {
   for (int i = 0; i < NODE; i++)
      path[i] = -1;
   path[0] = 0; //first vertex as 0

   if ( cycleFound(1) == false ) {
      cout << "Solution does not exist"<<endl;
      return false;
   }

   displayCycle();
   return true;
}

int main() {
   hamiltonianCycle();
}

Output

Cycle: 0 1 2 4 3 0
Advertisements

We use cookies to provide and improve our services. By using our site, you consent to our Cookies Policy.