

Apache Kafka

i

About the Tutorial

Apache Kafka was originated at LinkedIn and later became an open sourced Apache project in

2011, then First-class Apache project in 2012. Kafka is written in Scala and Java. Apache Kafka

is publish-subscribe based fault tolerant messaging system. It is fast, scalable and distributed

by design.

This tutorial will explore the principles of Kafka, installation, operations and then it will walk you

through with the deployment of Kafka cluster. Finally, we will conclude with real-time

applications and integration with Big Data Technologies.

Audience

This tutorial has been prepared for professionals aspiring to make a career in Big Data Analytics

using Apache Kafka messaging system. It will give you enough understanding on how to use

Kafka clusters.

Prerequisites

Before proceeding with this tutorial, you must have a good understanding of Java, Scala,

Distributed messaging system, and Linux environment.

Copyright and Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.

Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any

contents or a part of contents of this e-book in any manner without written consent of the

publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.

provides no guarantee regarding the accuracy, timeliness or completeness of our website or its

contents including this tutorial. If you discover any errors on our website or in this tutorial,

please notify us at contact@tutorialspoint.com

Apache Kafka

ii

Table of Contents

About the Tutorial... i

Audience ... i

Prerequisites ... i

Copyright and Disclaimer .. i

Table of Contents ... ii

1. KAFKA – INTRODUCTION ... 1

What is a Messaging System? .. 1

What is Kafka? ... 2

2. KAFKA – FUNDAMENTALS.. 4

3. KAFKA – CLUSTER ARCHITECTURE ... 7

4. KAFKA – WORKFLOW ... 9

Workflow of Pub-Sub Messaging ... 9

Workflow of Queue Messaging / Consumer Group .. 10

Role of ZooKeeper.. 11

5. KAFKA – INSTALLATION STEPS ... 12

Step 1: Verifying Java Installation .. 12

Step 2: ZooKeeper Framework Installation .. 13

Step 3: Apache Kafka Installation ... 15

Step 4: Stop the Server ... 16

6. KAFKA – BASIC OPERATIONS .. 17

Single Node-Single Broker Configuration ... 17

List of Topics .. 18

Single Node-Multiple Brokers Configuration .. 20

Apache Kafka

iii

Creating a Topic ... 21

Basic Topic Operations ... 22

Deleting a Topic ... 23

7. KAFKA – SIMPLE PRODUCER EXAMPLE .. 24

KafkaProducer API ... 24

Producer API .. 25

Configuration Settings.. 25

ProducerRecord API ... 26

SimpleProducer application ... 27

Simple Consumer Example ... 29

ConsumerRecord API ... 30

ConsumerRecords API .. 31

Configuration Settings.. 31

SimpleConsumer Application ... 32

8. KAFKA – CONSUMER GROUP EXAMPLE ... 34

9. KAFKA – INTEGRATION WITH STORM .. 37

About Storm .. 37

Integration with Storm ... 37

Bolt Creation .. 39

Submitting to Topology .. 42

Execution ... 44

10. KAFKA – INTEGRATION WITH SPARK .. 45

About Spark ... 45

Integration with Spark ... 45

11. KAFKA – REAL-TIME APPLICATION (TWITTER) .. 50

Apache Kafka

iv

Twitter Streaming API .. 50

12. KAFKA – TOOLS .. 55

System Tools .. 55

Replication Tool ... 55

13. KAFKA – APPLICATIONS ... 56

Apache Kafka

5

In Big Data, an enormous volume of data is used. Regarding data, we have two main

challenges. The first challenge is how to collect large volume of data and the second challenge

is to analyze the collected data. To overcome those challenges, you must need a messaging

system.

Kafka is designed for distributed high throughput systems. Kafka tends to work very well as

a replacement for a more traditional message broker. In comparison to other messaging

systems, Kafka has better throughput, built-in partitioning, replication and inherent fault-

tolerance, which makes it a good fit for large-scale message processing applications.

What is a Messaging System?

A Messaging System is responsible for transferring data from one application to another, so

the applications can focus on data, but not worry about how to share it. Distributed messaging

is based on the concept of reliable message queuing. Messages are queued asynchronously

between client applications and messaging system. Two types of messaging patterns are

available – one is point to point and the other is publish-subscribe (pub-sub) messaging

system. Most of the messaging patterns follow pub-sub.

Point to Point Messaging System

In a point-to-point system, messages are persisted in a queue. One or more consumers can

consume the messages in the queue, but a particular message can be consumed by a

maximum of one consumer only. Once a consumer reads a message in the queue, it

disappears from that queue. The typical example of this system is an Order Processing

System, where each order will be processed by one Order Processor, but Multiple Order

Processors can work as well at the same time. The following diagram depicts the structure.

1. Kafka – Introduction

Apache Kafka

6

Publish-Subscribe Messaging System

In the publish-subscribe system, messages are persisted in a topic. Unlike point-to-point

system, consumers can subscribe to one or more topic and consume all the messages in that

topic. In the Publish-Subscribe system, message producers are called publishers and message

consumers are called subscribers. A real-life example is Dish TV, which publishes different

channels like sports, movies, music, etc., and anyone can subscribe to their own set of

channels and get them whenever their subscribed channels are available.

What is Kafka?

Apache Kafka is a distributed publish-subscribe messaging system and a robust queue that

can handle a high volume of data and enables you to pass messages from one end-point to

another. Kafka is suitable for both offline and online message consumption. Kafka messages

are persisted on the disk and replicated within the cluster to prevent data loss. Kafka is built

on top of the ZooKeeper synchronization service. It integrates very well with Apache Storm

and Spark for real-time streaming data analysis.

Benefits

Following are a few benefits of Kafka:

 Reliability - Kafka is distributed, partitioned, replicated and fault tolerance.

 Scalability - Kafka messaging system scales easily without down time.

 Durability - Kafka uses “Distributed commit log” which means messages persists on

disk as fast as possible, hence it is durable.

 Performance - Kafka has high throughput for both publishing and subscribing

messages. It maintains stable performance even many TB of messages are stored.

Apache Kafka

7

Kafka is very fast and guarantees zero downtime and zero data loss.

Use Cases

Kafka can be used in many Use Cases. Some of them are listed below:

 Metrics - Kafka is often used for operational monitoring data. This involves

aggregating statistics from distributed applications to produce centralized feeds of

operational data.

 Log Aggregation Solution - Kafka can be used across an organization to collect logs

from multiple services and make them available in a standard format to multiple

consumers.

 Stream Processing - Popular frameworks such as Storm and Spark Streaming read

data from a topic, processes it, and write processed data to a new topic where it

becomes available for users and applications. Kafka’s strong durability is also very

useful in the context of stream processing.

Need for Kafka

Kafka is a unified platform for handling all the real-time data feeds. Kafka supports low latency

message delivery and gives guarantee for fault tolerance in the presence of machine failures.

It has the ability to handle a large number of diverse consumers. Kafka is very fast, performs

2 million writes/sec. Kafka persists all data to the disk, which essentially means that all the

writes go to the page cache of the OS (RAM). This makes it very efficient to transfer data

from page cache to a network socket.

Apache Kafka

8

Before moving deep into the Kafka, you must aware of the main terminologies such as topics,

brokers, producers and consumers. The following diagram illustrates the main terminologies

and the table describes the diagram components in detail.

In the above diagram, a topic is configured into three partitions. Partition 1 has two offset

factors 0 and 1. Partition 2 has four offset factors 0, 1, 2, and 3. Partition 3 has one offset

factor 0. The id of the replica is same as the id of the server that hosts it.

Assume, if the replication factor of the topic is set to 3, then Kafka will create 3 identical

replicas of each partition and place them in the cluster to make available for all its operations.

To balance a load in cluster, each broker stores one or more of those partitions. Multiple

producers and consumers can publish and retrieve messages at the same time.

2. Kafka – Fundamentals

Apache Kafka

9

Components Description

Topics
A stream of messages belonging to a particular category is called a

topic. Data is stored in topics.

Partition

Topics are split into partitions. For each topic, Kafka keeps a

minimum of one partition. Each such partition contains messages in

an immutable ordered sequence. A partition is implemented as a set

of segment files of equal sizes.

Topics may have many partitions, so it can handle an arbitrary

amount of data.

Partition offset
Each partitioned message has a unique sequence id called as

“offset”.

Replicas of partition
Replicas are nothing but “backups” of a partition. Replicas are never

read or write data. They are used to prevent data loss.

Brokers

i) Brokers are simple system responsible for maintaining the

published data. Each broker may have zero or more partitions per

topic. Assume, if there are N partitions in a topic and N number of

brokers, each broker will have one partition.

ii) Assume if there are N partitions in a topic and more than N brokers

(n + m), the first N broker will have one partition and the next M

broker will not have any partition for that particular topic.

iii) Assume if there are N partitions in a topic and less than N brokers

(n-m), each broker will have one or more partition sharing among

them. This scenario is not recommended due to unequal load

distribution among the broker.

Kafka Cluster

Kafka’s having more than one broker are called as Kafka cluster. A

Kafka cluster can be expanded without downtime. These clusters are

used to manage the persistence and replication of message data.

Apache Kafka

10

Producers

Producers are the publisher of messages to one or more Kafka topics.

Producers send data to Kafka brokers. Every time a producer

publishes a message to a broker, the broker simply appends the

message to the last segment file. Actually, the message will be

appended to a partition. Producer can also send messages to a

partition of their choice.

Consumers

Consumers read data from brokers. Consumers subscribes to one or

more topics and consume published messages by pulling data from

the brokers.

Leader
"Leader" is the node responsible for all reads and writes for the given

partition. Every partition has one server acting as a leader.

Follower

Node which follows leader instructions are called as follower. If the

leader fails, one of the follower will automatically become the new

leader. A follower acts as normal consumer, pulls messages and

updates its own data store.

Apache Kafka

11

Take a look at the following illustration. It shows the cluster diagram of Kafka.

3. Kafka – Cluster Architecture

Apache Kafka

12

End of ebook preview

If you liked what you saw…
Buy it from our store @ https://store.tutorialspoint.com

