
http://www.tutorialspoint.com/cassandra/cassandra_create_keyspace.htm Copyright © tutorialspoint.com

CASSANDRA - CREATE KEYSPACECASSANDRA - CREATE KEYSPACE

Creating a Keyspace using Cqlsh
A keyspace in Cassandra is a namespace that defines data replication on nodes. A cluster contains
one keyspace per node. Given below is the syntax for creating a keyspace using the statement
CREATE KEYSPACE.

Syntax

CREATE KEYSPACE <identifier> WITH <properties>

i.e.

CREATE KEYSPACE “KeySpace Name”
WITH replication = {'class': ‘Strategy name’, 'replication_factor' : ‘No.Of replicas’};

CREATE KEYSPACE “KeySpace Name”
WITH replication = {'class': ‘Strategy name’, 'replication_factor' : ‘No.Of replicas’}

AND durable_writes = ‘Boolean value’;

The CREATE KEYSPACE statement has two properties: replication and durable_writes.

Replication
The replication option is to specify the Replica Placement strategy and the number of replicas
wanted. The following table lists all the replica placement strategies.

Strategy name Description

Simple Strategy' Specifies a simple replication factor for the cluster.

Network Topology Strategy Using this option, you can set the replication factor for
each data-center independently.

Old Network Topology Strategy This is a legacy replication strategy.

Using this option, you can instruct Cassandra whether to use commitlog for updates on the
current KeySpace. This option is not mandatory and by default, it is set to true.

Example
Given below is an example of creating a KeySpace.

Here we are creating a KeySpace named TutorialsPoint.

We are using the first replica placement strategy, i.e.., Simple Strategy.

And we are choosing the replication factor to 1 replica.

cqlsh.> CREATE KEYSPACE tutorialspoint
WITH replication = {'class':'SimpleStrategy', 'replication_factor' : 3};

Verification
You can verify whether the table is created or not using the command Describe. If you use this
command over keyspaces, it will display all the keyspaces created as shown below.

http://www.tutorialspoint.com/cassandra/cassandra_create_keyspace.htm

cqlsh> DESCRIBE keyspaces;

tutorialspoint system system_traces

Here you can observe the newly created KeySpace tutorialspoint.

Durable_writes
By default, the durable_writes properties of a table is set to true, however it can be set to false.
You cannot set this property to simplex strategy.

Example
Given below is the example demonstrating the usage of durable writes property.

cqlsh> CREATE KEYSPACE test
... WITH REPLICATION = { 'class' : 'NetworkTopologyStrategy', 'datacenter1' : 3 }
... AND DURABLE_WRITES = false;

Verification
You can verify whether the durable_writes property of test KeySpace was set to false by querying
the System Keyspace. This query gives you all the KeySpaces along with their properties.

cqlsh> SELECT * FROM system.schema_keyspaces;

 keyspace_name | durable_writes | strategy_class
| strategy_options
----------------+----------------+--
--+----------------------------

 test | False | org.apache.cassandra.locator.NetworkTopologyStrategy |
{"datacenter1" : "3"}

 tutorialspoint | True | org.apache.cassandra.locator.SimpleStrategy |
{"replication_factor" : "4"}

 system | True | org.apache.cassandra.locator.LocalStrategy |
{ }

 system_traces | True | org.apache.cassandra.locator.SimpleStrategy |
{"replication_factor" : "2"}

(4 rows)

Here you can observe the durable_writes property of test KeySpace was set to false.

Using a Keyspace
You can use a created KeySpace using the keyword USE. Its syntax is as follows:

Syntax:USE <identifier>

Example
In the following example, we are using the KeySpace tutorialspoint.

cqlsh> USE tutorialspoint;
cqlsh:tutorialspoint>

Creating a Keyspace using Java API
You can create a Keyspace using the execute method of Session class. Follow the steps given

below to create a keyspace using Java API.

Step1: Create a Cluster Object
First of all, create an instance of Cluster.builder class of com.datastax.driver.core package as
shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1 = Cluster.builder();

Add a contact point IPaddressofthenode using addContactPoint method of Cluster.Builder object.
This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2 = build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method called build in
the Cluster.Builder class. The following code shows how to create a cluster object.

//Building a cluster
Cluster cluster = builder.build();

You can build a cluster object in a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object
Create an instance of Session object using the connect method of Cluster class as shown below.

Session session = cluster.connect();

This method creates a new session and initializes it. If you already have a keyspace, you can set it
to the existing one by passing the keyspace name in string format to this method as shown below.

Session session = cluster.connect(“ Your keyspace name ”);

Step 3: Execute Query
You can execute CQL queries using the execute method of Session class. Pass the query either in
string format or as a Statement class object to the execute method. Whatever you pass to this
method in string format will be executed on the cqlsh.

In this example, we are creating a KeySpace named tp. We are using the first replica placement
strategy, i.e., Simple Strategy, and we are choosing the replication factor to 1 replica.

You have to store the query in a string variable and pass it to the execute method as shown below.

String query = "CREATE KEYSPACE tp WITH replication "
 + "= {'class':'SimpleStrategy', 'replication_factor':1}; ";
session.execute(query);

Step4 : Use the KeySpace
You can use a created KeySpace using the execute method as shown below.

execute(“ USE tp ”);

Given below is the complete program to create and use a keyspace in Cassandra using Java API.

import com.datastax.driver.core.Cluster;
import com.datastax.driver.core.Session;

public class Create_KeySpace {

 public static void main(String args[]){

 //Query
 String query = "CREATE KEYSPACE tp WITH replication "
 + "= {'class':'SimpleStrategy', 'replication_factor':1};";

 //creating Cluster object
 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object
 Session session = cluster.connect();

 //Executing the query
 session.execute(query);

 //using the KeySpace
 session.execute("USE tp");
 System.out.println("Keyspace created");
 }
}

Save the above program with the class name followed by .java, browse to the location where it is
saved. Compile and execute the program as shown below.

$javac Create_KeySpace.java
$java Create_KeySpace

Under normal conditions, it will produce the following output:

Keyspace created
Loading [MathJax]/jax/output/HTML-CSS/jax.js

