
http://www.tutorialspoint.com/cassandra/cassandra_read_data.htm Copyright © tutorialspoint.com

CASSANDRA - READ DATACASSANDRA - READ DATA

Reading Data using Select Clause
SELECT clause is used to read data from a table in Cassandra. Using this clause, you can read a
whole table, a single column, or a particular cell. Given below is the syntax of SELECT clause.

SELECT FROM <tablename>

Example
Assume there is a table in the keyspace named emp with the following details:

emp_id emp_name emp_city emp_phone emp_sal

1 ram Hyderabad 9848022338 50000

2 robin null 9848022339 50000

3 rahman Chennai 9848022330 50000

4 rajeev Pune 9848022331 30000

The following example shows how to read a whole table using SELECT clause. Here we are reading
a table called emp.

cqlsh:tutorialspoint> select * from emp;

 emp_id | emp_city | emp_name | emp_phone | emp_sal
--------+-----------+----------+------------+---------
 1 | Hyderabad | ram | 9848022338 | 50000
 2 | null | robin | 9848022339 | 50000
 3 | Chennai | rahman | 9848022330 | 50000
 4 | Pune | rajeev | 9848022331 | 30000

(4 rows)

Reading Required Columns
The following example shows how to read a particular column in a table.

cqlsh:tutorialspoint> SELECT emp_name, emp_sal from emp;

 emp_name | emp_sal
----------+---------
 ram | 50000
 robin | 50000
 rajeev | 30000
 rahman | 50000

(4 rows)

Where Clause
Using WHERE clause, you can put a constraint on the required columns. Its syntax is as follows:

SELECT FROM <table name> WHERE <condition>;

http://www.tutorialspoint.com/cassandra/cassandra_read_data.htm

Note: A WHERE clause can be used only on the columns that are a part of primary key or have a
secondary index on them.

In the following example, we are reading the details of an employee whose salary is 50000. First of
all, set secondary index to the column emp_sal.

cqlsh:tutorialspoint> CREATE INDEX ON emp(emp_sal);
cqlsh:tutorialspoint> SELECT * FROM emp WHERE emp_sal=50000;

 emp_id | emp_city | emp_name | emp_phone | emp_sal
--------+-----------+----------+------------+---------
 1 | Hyderabad | ram | 9848022338 | 50000
 2 | null | robin | 9848022339 | 50000
 3 | Chennai | rahman | 9848022330 | 50000

Reading Data using Java API
You can read data from a table using the execute method of Session class. Follow the steps given
below to execute multiple statements using batch statement with the help of Java API.

Step1:Create a Cluster Object
Create an instance of Cluster.builder class of com.datastax.driver.core package as shown
below.

//Creating Cluster.Builder object
Cluster.Builder builder1 = Cluster.builder();

Add a contact point IPaddressofthenode using the addContactPoint method of Cluster.Builder
object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object
Cluster.Builder builder2 = build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method called build in
the Cluster.Builder class. Use the following code to create the cluster object.

//Building a cluster
Cluster cluster = builder.build();

You can build the cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object
Create an instance of Session object using the connect method of Cluster class as shown below.

Session session = cluster.connect();

This method creates a new session and initializes it. If you already have a keyspace, then you can
set it to the existing one by passing the KeySpace name in string format to this method as shown
below.

Session session = cluster.connect(“Your keyspace name”);

Here we are using the KeySpace called tp. Therefore, create the session object as shown below.

Session session = cluster.connect(“tp”);

Step 3: Execute Query

You can execute CQL queries using execute method of Session class. Pass the query either in
string format or as a Statement class object to the execute method. Whatever you pass to this
method in string format will be executed on the cqlsh.

In this example, we are retrieving the data from emp table. Store the query in a string and pass it
to the execute method of session class as shown below.

String query = ”SELECT 8 FROM emp”;
session.execute(query);

Execute the query using the execute method of Session class.

Step 4: Get the ResultSet Object
The select queries will return the result in the form of a ResultSet object, therefore store the
result in the object of RESULTSET class as shown below.

ResultSet result = session.execute();

Given below is the complete program to read data from a table.

import com.datastax.driver.core.Cluster;
import com.datastax.driver.core.ResultSet;
import com.datastax.driver.core.Session;

public class Read_Data {

 public static void main(String args[])throws Exception{

 //queries
 String query = "SELECT * FROM emp";

 //Creating Cluster object
 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object
 Session session = cluster.connect("tutorialspoint");

 //Getting the ResultSet
 ResultSet result = session.execute(query);

 System.out.println(result.all());
 }
}

Save the above program with the class name followed by .java, browse to the location where it is
saved. Compile and execute the program as shown below.

$javac Read_Data.java
$java Read_Data

Under normal conditions, it should produce the following output:

[Row[1, Hyderabad, ram, 9848022338, 50000], Row[2, Delhi, robin,
9848022339, 50000], Row[4, Pune, rajeev, 9848022331, 30000], Row[3,
Chennai, rahman, 9848022330, 50000]]

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

