
http://www.tutorialspoint.com/compiler_design/compiler_design_overview.htm Copyright © tutorialspoint.com

COMPILER DESIGN - OVERVIEWCOMPILER DESIGN - OVERVIEW

Computers are a balanced mix of software and hardware. Hardware is just a piece of mechanical
device and its functions are being controlled by a compatible software. Hardware understands
instructions in the form of electronic charge, which is the counterpart of binary language in
software programming. Binary language has only two alphabets, 0 and 1. To instruct, the hardware
codes must be written in binary format, which is simply a series of 1s and 0s. It would be a difficult
and cumbersome task for computer programmers to write such codes, which is why we have
compilers to write such codes.

Language Processing System
We have learnt that any computer system is made of hardware and software. The hardware
understands a language, which humans cannot understand. So we write programs in high-level
language, which is easier for us to understand and remember. These programs are then fed into a
series of tools and OS components to get the desired code that can be used by the machine. This is
known as Language Processing System.

The high-level language is converted into binary language in various phases. A compiler is a
program that converts high-level language to assembly language. Similarly, an assembler is a

http://www.tutorialspoint.com/compiler_design/compiler_design_overview.htm


program that converts the assembly language to machine-level language.

Let us first understand how a program, using C compiler, is executed on a host machine.

User writes a program in C language high − levellanguage.

The C compiler, compiles the program and translates it to assembly program 
low − levellanguage.

An assembler then translates the assembly program into machine code object.

A linker tool is used to link all the parts of the program together for execution 
executablemachinecode.

A loader loads all of them into memory and then the program is executed.

Before diving straight into the concepts of compilers, we should understand a few other tools that
work closely with compilers.

Preprocessor
A preprocessor, generally considered as a part of compiler, is a tool that produces input for
compilers. It deals with macro-processing, augmentation, file inclusion, language extension, etc.

Interpreter
An interpreter, like a compiler, translates high-level language into low-level machine language.
The difference lies in the way they read the source code or input. A compiler reads the whole
source code at once, creates tokens, checks semantics, generates intermediate code, executes
the whole program and may involve many passes. In contrast, an interpreter reads a statement
from the input, converts it to an intermediate code, executes it, then takes the next statement in
sequence. If an error occurs, an interpreter stops execution and reports it. whereas a compiler
reads the whole program even if it encounters several errors.

Assembler
An assembler translates assembly language programs into machine code.The output of an
assembler is called an object file, which contains a combination of machine instructions as well as
the data required to place these instructions in memory.

Linker
Linker is a computer program that links and merges various object files together in order to make
an executable file. All these files might have been compiled by separate assemblers. The major
task of a linker is to search and locate referenced module/routines in a program and to determine
the memory location where these codes will be loaded, making the program instruction to have
absolute references.

Loader
Loader is a part of operating system and is responsible for loading executable files into memory
and execute them. It calculates the size of a program instructionsanddata and creates memory space
for it. It initializes various registers to initiate execution.

Cross-compiler
A compiler that runs on platform A and is capable of generating executable code for platform B is
called a cross-compiler.

Source-to-source Compiler
A compiler that takes the source code of one programming language and translates it into the
source code of another programming language is called a source-to-source compiler.
Loading [MathJax]/jax/output/HTML-CSS/jax.js


