
http://www.tutorialspoint.com/compiler_design/compiler_design_regular_expressions.htm
Copyright © tutorialspoint.com

COMPILER DESIGN - REGULAR EXPRESSIONSCOMPILER DESIGN - REGULAR EXPRESSIONS

The lexical analyzer needs to scan and identify only a finite set of valid string/token/lexeme that
belong to the language in hand. It searches for the pattern defined by the language rules.

Regular expressions have the capability to express finite languages by defining a pattern for finite
strings of symbols. The grammar defined by regular expressions is known as regular grammar.
The language defined by regular grammar is known as regular language.

Regular expression is an important notation for specifying patterns. Each pattern matches a set of
strings, so regular expressions serve as names for a set of strings. Programming language tokens
can be described by regular languages. The specification of regular expressions is an example of
a recursive definition. Regular languages are easy to understand and have efficient
implementation.

There are a number of algebraic laws that are obeyed by regular expressions, which can be used
to manipulate regular expressions into equivalent forms.

Operations
The various operations on languages are:

Union of two languages L and M is written as

L U M = {s | s is in L or s is in M}

Concatenation of two languages L and M is written as

LM = {st | s is in L and t is in M}

The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

Notations
If r and s are regular expressions denoting the languages Lr and Ls, then

Union : r|s is a regular expression denoting Lr U Ls

Concatenation : rs is a regular expression denoting LrLs

Kleene closure : r* is a regular expression denoting L(r)*

r is a regular expression denoting Lr

Precedence and Associativity
*, concatenation . , and | pipesign are left associative
* has the highest precedence
Concatenation . has the second highest precedence.
| pipesign has the lowest precedence of all.

Representing valid tokens of a language in regular expression
If x is a regular expression, then:

x* means zero or more occurrence of x.

i.e., it can generate { e, x, xx, xxx, xxxx, … }

http://www.tutorialspoint.com/compiler_design/compiler_design_regular_expressions.htm

x+ means one or more occurrence of x.

i.e., it can generate { x, xx, xxx, xxxx … } or x.x*

x? means at most one occurrence of x

i.e., it can generate either {x} or {e}.

[a-z] is all lower-case alphabets of English language.

[A-Z] is all upper-case alphabets of English language.

[0-9] is all natural digits used in mathematics.

Representing occurrence of symbols using regular expressions
letter = [a – z] or [A – Z]

digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 or [0-9]

sign = [+ | -]

Representing language tokens using regular expressions

Decimal = sign?digit+

Identifier = letterletter | digit*

The only problem left with the lexical analyzer is how to verify the validity of a regular expression
used in specifying the patterns of keywords of a language. A well-accepted solution is to use finite
automata for verification.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

