
http://www.tutorialspoint.com/compiler_design/compiler_design_top_down_parser.htm Copyright © tutorialspoint.com

COMPILER DESIGN - TOP-DOWN PARSERCOMPILER DESIGN - TOP-DOWN PARSER

We have learnt in the last chapter that the top-down parsing technique parses the input, and starts
constructing a parse tree from the root node gradually moving down to the leaf nodes. The types
of top-down parsing are depicted below:

Recursive Descent Parsing
Recursive descent is a top-down parsing technique that constructs the parse tree from the top and
the input is read from left to right. It uses procedures for every terminal and non-terminal entity.
This parsing technique recursively parses the input to make a parse tree, which may or may not
require back-tracking. But the grammar associated with it ifnotleftfactored cannot avoid back-
tracking. A form of recursive-descent parsing that does not require any back-tracking is known as
predictive parsing.

This parsing technique is regarded recursive as it uses context-free grammar which is recursive in
nature.

Back-tracking
Top- down parsers start from the root node startsymbol and match the input string against the
production rules to replace them ifmatched. To understand this, take the following example of CFG:

S → rXd | rZd
X → oa | ea
Z → ai

For an input string: read, a top-down parser, will behave like this:

It will start with S from the production rules and will match its yield to the left-most letter of the
input, i.e. ‘r’. The very production of S S → rXd matches with it. So the top-down parser advances to
the next input letter i. e. ‘e ′. The parser tries to expand non-terminal ‘X’ and checks its production
from the left X → oa. It does not match with the next input symbol. So the top-down parser
backtracks to obtain the next production rule of X, X → ea.

Now the parser matches all the input letters in an ordered manner. The string is accepted.

http://www.tutorialspoint.com/compiler_design/compiler_design_top_down_parser.htm

Predictive Parser
Predictive parser is a recursive descent parser, which has the capability to predict which
production is to be used to replace the input string. The predictive parser does not suffer from
backtracking.

To accomplish its tasks, the predictive parser uses a look-ahead pointer, which points to the next
input symbols. To make the parser back-tracking free, the predictive parser puts some constraints
on the grammar and accepts only a class of grammar known as LLk grammar.

Predictive parsing uses a stack and a parsing table to parse the input and generate a parse tree.
Both the stack and the input contains an end symbol $ to denote that the stack is empty and the
input is consumed. The parser refers to the parsing table to take any decision on the input and
stack element combination.

In recursive descent parsing, the parser may have more than one production to choose from for a
single instance of input, whereas in predictive parser, each step has at most one production to
choose. There might be instances where there is no production matching the input string, making
the parsing procedure to fail.

LL Parser
An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar but with some
restrictions to get the simplified version, in order to achieve easy implementation. LL grammar can
be implemented by means of both algorithms namely, recursive-descent or table-driven.

LL parser is denoted as LLk. The first L in LLk is parsing the input from left to right, the second L in
LLk stands for left-most derivation and k itself represents the number of look aheads. Generally k =
1, so LLk may also be written as LL1.

LL Parsing Algorithm
We may stick to deterministic LL1 for parser explanation, as the size of table grows exponentially
with the value of k. Secondly, if a given grammar is not LL1, then usually, it is not LLk, for any given
k.

Given below is an algorithm for LL1 Parsing:

Input:
 string ω
 parsing table M for grammar G

Output:
 If ω is in L(G) then left-most derivation of ω,
 error otherwise.

Initial State : $S on stack (with S being start symbol)
 ω$ in the input buffer

SET ip to point the first symbol of ω$.

repeat
 let X be the top stack symbol and a the symbol pointed by ip.

 if X∈ Vt or $
 if X = a
 POP X and advance ip.
 else
 error()
 endif

 else /* X is non-terminal */

 if M[X,a] = X → Y1, Y2,... Yk
 POP X
 PUSH Yk, Yk-1,... Y1 /* Y1 on top */
 Output the production X → Y1, Y2,... Yk
 else
 error()
 endif
 endif
until X = $ /* empty stack */

A grammar G is LL1 if A → α | β are two distinct productions of G:

for no terminal, both α and β derive strings beginning with a.

at most one of α and β can derive empty string.

if β → t, then α does not derive any string beginning with a terminal in FOLLOWA.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

