

.NET Core

 i

About the Tutorial

.NET Core is the latest general purpose development platform maintained by Microsoft. It

works across different platforms and has been redesigned in a way that makes .NET fast,

flexible and modern.

.NET Core happens to be one of the major contributions by Microsoft. Developers can now
build Android, iOS, Linux, Mac, and Windows applications with .NET, all in Open Source.

Audience

This tutorial is designed for software programmers who want to learn the basics of .NET
Core.

Prerequisites

You should have a basic understanding of Computer Programming terminologies. A basic

understanding of any of the programming languages is a plus.

Disclaimer & Copyright

 Copyright 2018 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

.NET Core

 ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Disclaimer & Copyright ... i
Table of Contents .. ii

1. .NET Core – Overview ... 1
Characteristics of .NET Core .. 1
The .NET Core Platform ... 2

2. .NET Core – Prerequisites .. 3

3. .NET Core – Environment Setup .. 4
Visual Studio 2015 ... 4

4. .NET Core – Getting Started .. 10

5. .NET Core – Numerics .. 13
Integral types ... 13
Floating-point types... 13

6. .NET Core – Garbage Collection ... 16
Advantages of Garbage Collection .. 16
Conditions for Garbage Collection .. 16
Generations ... 16

7. .NET Core – Code Execution .. 18
.NET Core Code Execution Process .. 19

8. .NET Core – Modularity ... 21

9. .NET Core – Project Files ... 24

10. .NET Core – Package References ... 28

11. .NET Core – Create UWP App with .NET Core .. 34

12. .NET Core – MSBuild ... 42

13. .NET Core – Metapackage ... 47

14. .NET Core – Windows Runtime and Extension SDKs .. 53

15. .NET Core – Create .NET Standard Library ... 58

16. .NET Core – Portable Class Library... 63
What is PCL .. 64

17. .NET Core – Adding References to Library ... 72

18. .NET Core – Sharing .NET Core Libraries .. 77

.NET Core

 iii

19. .NET Core – Creating a Xamarin.Forms Project .. 87

20. .NET Core – PCL Troubleshooting .. 95

21. .NET Core – Create a Testing Project ... 105

22. .NET Core – Running Tests in Visual Studio ... 109

23. .NET Core – Testing Library ... 116

24. .NET Core – Managed Extensibility Framework ... 124

25. .NET Core – .NET Core SDK .. 134

26. .NET Core – MSBuild and project.json ... 140
MSBuild vs project.json ... 141

27. .NET Core – Restoring and Building with MSBuild ... 143

28. .NET Core – Migrations ... 147

.NET Core

 4

.NET Core is the latest general purpose development platform maintained by Microsoft. It

works across different platforms and has been redesigned in a way that makes .NET fast,

flexible and modern. This happens to be one of the major contributions by Microsoft.

Developers can now build Android, iOS, Linux, Mac, and Windows applications with .NET, all
in Open Source.

In this tutorial, we will cover .NET Core and a few new innovations including the .NET
Framework updates, .NET Standard, and Universal Windows Platform updates, etc.

Characteristics of .NET Core

The following are the major characteristics of .NET Core:

Open source

 .NET Core is an open source implementation, using MIT and Apache 2 licenses.

 .NET Core is a .NET Foundation project and is available on GitHub.

 As an open source project, it promotes a more transparent development process and
promotes an active and engaged community.

Cross-platform

 Application implemented in .NET Core can be run and its code can be reused regardless
of your platform target.

 It currently supports three main operating systems (OS):

o Windows

o Linux

o MacOS

 The supported Operating Systems (OS), CPUs and application scenarios will grow over
time, provided by Microsoft, other companies, and individuals.

Flexible deployment

 There can be two types of deployments for .NET Core applications:

o Framework-dependent deployment

o Self-contained deployment

1. .NET Core – Overview

.NET Core

 5

 With framework-dependent deployment, your app depends on a system-wide version
of .NET Core on which your app and third-party dependencies are installed.

 With self-contained deployment, the .NET Core version used to build your application

is also deployed along with your app and third-party dependencies and can run side-

by-side with other versions.

Command-line tools

 All product scenarios can be exercised at the command-line.

Compatible

 .NET Core is compatible with .NET Framework, Xamarin and Mono, via the .NET

Standard Library.

Modular

 .NET Core is released through NuGet in smaller assembly packages.

 .NET Framework is one large assembly that contains most of the core functionalities.

 .NET Core is made available as smaller feature-centric packages.

 This modular approach enables the developers to optimize their app by including just
those NuGet packages which they need in their app.

 The benefits of a smaller app surface area include tighter security, reduced servicing,
improved performance, and decreased costs in a pay-for-what-you-use model.

The .NET Core Platform

.NET Core Platform contains the following main parts:

 .NET Runtime: It provides a type system, assembly loading, a garbage collector,

native interop and other basic services.

 Fundamental Libraries: A set of framework libraries, which provide primitive data

types, app composition types and fundamental utilities.

 SDK & Compiler: A set of SDK tools and language compilers that enable the base
developer experience, available in the .NET Core SDK.

 ‘dotnet’ app host: it is used to launch .NET Core apps. It selects the runtime and

hosts the runtime, provides an assembly loading policy and launches the app. The
same host is also used to launch SDK tools in much the same way.

.NET Core

 6

In this chapter, we will discuss the various dependencies that you need to deploy and run.

These include the .NET Core applications on Windows machines that are developed using

Visual Studio.

Supported Windows Versions

.NET Core is supported on the following versions of Windows:

 Windows 7 SP1

 Windows 8.1

 Windows 10

 Windows Server 2008 R2 SP1 (Full Server or Server Core)

 Windows Server 2012 SP1 (Full Server or Server Core)

 Windows Server 2012 R2 SP1 (Full Server or Server Core)

 Windows Server 2016 (Full Server, Server Core or Nano Server)

Dependencies

 If you are running your .NET Core application on Windows versions earlier than

Windows 10 and Windows Server 2016, then it will also require the Visual C++

Redistributable.

 This dependency is automatically installed for you if you use the .NET Core installer.

 You need to manually install the Visual C++ Redistributable for Visual Studio 2015 if

you are installing .NET Core via the installer script or deploying a self-contained .NET
Core application.

 For Windows 7 and Windows Server 2008 machines, you need to make sure that your

Windows installation is up-to-date and also includes hotfix KB2533623 installed

through Windows Update.

Prerequisites with Visual Studio

 To develop .NET Core applications using the .NET Core SDK, you can use any editor of
your choice.

 However, if you want to develop .NET Core applications on Windows using Visual
Studio, you can use the following two versions:

o Visual Studio 2015

o Visual Studio 2017 RC

2. .NET Core – Prerequisites

.NET Core

 7

 Projects created with Visual Studio 2015 will be project.json-based by default while
projects created with Visual Studio 2017 RC will always be MSBuild-based.

.NET Core

 8

In this chapter, we will discuss the Environment Setup of .NET Core. It is a significant redesign

of the .NET Framework. To use .NET Core in your application, there are two versions you can

use:

 Visual Studio 2015

 Visual Studio 2017 RC

Visual Studio 2015

To use Visual Studio 2015, you must have installed the following;

 Microsoft Visual Studio 2015 Update 3

 Microsoft .NET Core 1.0.1 - VS 2015 Tooling Preview 2

Microsoft provides a free version of visual studio which also contains the SQL Server and can

be downloaded from https://www.visualstudio.com/en-us/downloads/download-visual-

studio-vs.aspx and Microsoft .NET Core 1.0.1 - VS 2015 Tooling Preview 2 can be downloaded
from https://go.microsoft.com/fwlink/?LinkId=817245.

You can also follow the installation guidelines on the following Url
https://www.microsoft.com/net/core/#windowsvs2015.

Installation of Visual Studio 2015

Follow these steps to install Visual Studio 2015:

Step 1: Once the downloading completes, then run the installer. The following dialog box will
be displayed.

3. .NET Core – Environment Setup

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://go.microsoft.com/fwlink/?LinkId=817245
https://www.microsoft.com/net/core/#windowsvs2015

.NET Core

 9

.NET Core

 10

Step 2: Click Install to start the installation process.

Step 3: Once the installation completes, you will see the following dialog box.

Step 4: Close this dialog and restart your computer if required.

.NET Core

 11

Step 5: Open Visual Studio from the Start Menu; you will receive the following dialog box. It

may take a few minutes to load and finally be used for the first time.

Step 6: Once it is loaded, you will see the following screen.

.NET Core

 12

Step 7: Once Visual Studio installation is finished, then close Visual Studio and launch
Microsoft .NET Core - VS 2015 Tooling Preview 2.

Step 8: Check the checkbox and click Install.

.NET Core

 13

Step 9: Once the installation completes, you will see the following dialog box.

You are now ready to start your application using .NET Core.

Visual Studio 2017

In this tutorial, we will be using Visual Studio 2015, but if you want to use Visual Studio 2017,

an experimental release of .NET Core tools for Visual Studio is included in Visual Studio 2017

RC and you can see the installation guidelines here

https://www.microsoft.com/net/core/#windowsvs2017.

https://www.microsoft.com/net/core/#windowsvs2017

.NET Core

 14

Visual Studio 2015 provides a full-featured development environment for developing .NET

Core applications. In this chapter, we will be creating a new project inside Visual Studio. Once

you have installed the Visual Studio 2015 tooling, you can start building a new .NET Core
Application.

In the New Project dialog box, in the Templates list, expand the Visual C# node and select

.NET Core and you should see the following three new project templates:

 Class Library (.NET Core)

 Console Application (.NET Core)

 ASP.NET Core Web Application (.NET Core)

In the middle pane on the New Project dialog box, select Console Application (.NET Core) and
name it "FirstApp", then click OK.

4. .NET Core – Getting Started

.NET Core

 15

Visual Studio will open the newly created project, and you will see in the Solution Explorer
window all of the files that are in this project.

To test that .NET core console application is working, let us add the following line.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

namespace FirstApp

{

 public class Program

 {

 public static void Main(string[] args)

.NET Core

 16

 {

 Console.WriteLine("Hello guys, welcome to .NET Core world!");

 }

 }

}

Now, run the application. You should see the following output.

.NET Core

 17

.NET Core supports the standard numeric integral and floating-point primitives. It also
supports the following types:

 System.Numerics.BigInteger which is an integral type with no upper or lower bound.

 System.Numerics.Complex is a type that represents complex numbers.

 A set of Single Instruction Multiple Data (SIMD)-enabled vector types in the
System.Numerics namespace.

Integral types

.NET Core supports both signed and unsigned integers of different ranges from one byte to

eight bytes in length. All integers are value types.

The following table represents the integral types and their size;

Type
Signed/

Unsigned
Size

(bytes)
Minimum Value Maximum Value

Byte Unsigned 1 0 255

Int16 Signed 2 −32,768 32,767

Int32 Signed 4 −2,147,483,648 2,147,483,647

Int64 Signed 8 −9,223,372,036,854,775,808 9,223,372,036,854,775,807

SByte Signed 1 -128 127

UInt16 Unsigned 2 0 65,535

UInt32 Unsigned 4 0 4,294,967,295

UInt64 Unsigned 8 0 18,446,744,073,709,551,615

Each integral type supports a standard set of arithmetic, comparison, equality, explicit
conversion, and implicit conversion operators.

You can also work with the individual bits in an integer value by using the System.BitConverter
class.

Floating-point types

.NET Core includes three primitive floating point types, which are shown in the following table.

Type
Size

(bytes)
Minimum Value Maximum Value

5. .NET Core – Numerics

https://docs.microsoft.com/dotnet/core/api/System.Byte
https://docs.microsoft.com/dotnet/core/api/System.Int16
https://docs.microsoft.com/dotnet/core/api/System.Int32
https://docs.microsoft.com/dotnet/core/api/System.Int64
https://docs.microsoft.com/dotnet/core/api/System.SByte
https://docs.microsoft.com/dotnet/core/api/System.UInt16
https://docs.microsoft.com/dotnet/core/api/System.UInt32
https://docs.microsoft.com/dotnet/core/api/System.UInt64

.NET Core

 18

Double 8 −1.79769313486232e308 1.79769313486232e308

Single 4 −3.402823e38 3.402823e38

Decimal 16
−79,228,162,514,264,337,593,5

43,950,335

79,228,162,514,264,337,593,543,9

50,335

 Each floating-point type supports a standard set of arithmetic, comparison, equality,
explicit conversion, and implicit conversion operators.

 You can also work with the individual bits in Double and Single values by using the
BitConverter class.

 The Decimal structure has its own methods, Decimal.GetBits and

Decimal.Decimal(Int32()), for working with a decimal value's individual bits, as well

as its own set of methods for performing some additional mathematical operations.

BigInteger

 System.Numerics.BigInteger is an immutable type that represents an arbitrarily large
integer whose value in theory has no upper or lower bounds.

 The methods of the BigInteger type is closely parallel to those of the other integral
types.

Complex

 The System.Numerics.Complex type represents a complex number, i.e., a number with
a real number part and an imaginary number part.

 It supports a standard set of arithmetic, comparison, equality, explicit conversion, and

implicit conversion operators, as well as mathematical, algebraic, and trigonometric
methods.

SIMD

 The Numerics namespace includes a set of SIMD-enabled vector types for .NET Core.

 SIMD allows some operations to be parallelized at the hardware level, which results in

huge performance improvements in mathematical, scientific, and graphics apps that
perform computations over vectors.

 The SIMD-enabled vector types in .NET Core include the following:

o System.Numerics.Vector2, System.Numerics.Vector3, and

System.Numerics.Vector4 types, which are 2, 3, and 4-dimensional vectors of

type Single.

o The Vector<T> structure that allows you to create a vector of any primitive

numeric type. The primitive numeric types include all numeric types in the
System namespace except for Decimal.

https://docs.microsoft.com/dotnet/core/api/System.Double
https://docs.microsoft.com/dotnet/core/api/System.Single
https://docs.microsoft.com/dotnet/core/api/System.Decimal

.NET Core

 19

o Two matrix types, System.Numerics.Matrix3x2, which represents a 3x2 matrix;
and System.Numerics.Matrix4x4, which represents a 4x4 matrix.

o The System.Numerics.Plane type, which represents a three-dimensional plane,

and the System.Numerics.Quaternion type, which represents a vector that is

used to encode three-dimensional physical rotations.

.NET Core

 20

In this chapter, we will cover the concept of Garbage collection which is one of most important

features of the .NET managed code platform. The garbage collector (GC) manages the

allocation and release of memory. The garbage collector serves as an automatic memory
manager.

 You do not need to know how to allocate and release memory or manage the lifetime
of the objects that use that memory.

 An allocation is made any time you declare an object with a “new” keyword or a value
type is boxed. Allocations are typically very fast.

 When there isn’t enough memory to allocate an object, the GC must collect and dispose
of garbage memory to make memory available for new allocations.

 This process is known as garbage collection.

Advantages of Garbage Collection

Garbage Collection provides the following benefits:

 You don’t need to free memory manually while developing your application.

 It also allocates objects on the managed heap efficiently.

 When objects are no longer used then it will reclaim those objects by clearing their

memory, and keeps the memory available for future allocations.

 Managed objects automatically get clean content to start with, so their constructors
do not have to initialize every data field.

 It also provides memory safety by making sure that an object cannot use the content
of another object.

Conditions for Garbage Collection

Garbage collection occurs when one of the following conditions is true.

 The system has low physical memory.

 The memory that is used by allocated objects on the managed heap surpasses an
acceptable threshold. This threshold is continuously adjusted as the process runs.

 The GC.Collect method is called and in almost all cases, you do not have to call this

method, because the garbage collector runs continuously. This method is primarily
used for unique situations and testing.

6. .NET Core – Garbage Collection

.NET Core

 21

Generations

The .NET Garbage Collector has 3 generations and each generation has its own heap that that

is used for the storage of allocated objects. There is a basic principle that most objects are
either short-lived or long-lived.

Generation First (0)

 In Generation 0, objects are first allocated.

 In this generation, objects often don’t live past the first generation, since they are no
longer in use (out of scope) by the time the next garbage collection occurs.

 Generation 0 is quick to collect because its associated heap is small.

Generation Second (1)

 In Generation 1, objects have a second chance space.

 Objects that are short-lived but survive the generation 0 collection (often based on
coincidental timing) go to generation 1.

 Generation 1 collections are also quick because its associated heap is also small.

 The first two heaps remain small because objects are either collected or promoted to
the next generation heap.

Generation Third (2)

 In Generation 2, all long objects are lived and its heap can grow to be very large.

 The objects in this generation can survive a long time and there is no next generation
heap to further promote objects.

 The Garbage Collector has an additional heap for large objects known as Large Object
Heap (LOH).

 It is reserved for objects that are 85,000 bytes or greater.

 Large objects are not allocated to the generational heaps but are allocated directly to
the LOH.

 Generation 2 and LOH collections can take noticeable time for programs that have run

for a long time or operate over large amounts of data.

 Large server programs are known to have heaps in the 10s of GBs.

 The GC employs a variety of techniques to reduce the amount of time that it blocks

program execution.

 The primary approach is to do as much garbage collection work as possible on a
background thread in a way that does not interfere with program execution.

 The GC also exposes a few ways for developers to influence its behavior, which can be
quite useful to improve performance.

.NET Core

 22

In this chapter, we will understand the execution process of .NET Core and compare it with
the .NET Framework. The managed execution process includes the following steps.

 Choosing a compiler

 Compiling your code to MSIL

 Compiling MSIL to native code

 Running code

Choosing a Compiler

 It is a multi-language execution environment, the runtime supports a wide variety of
data types and language features.

 To obtain the benefits provided by the common language runtime, you must use one
or more language compilers that target the runtime.

Compiling your code to MSIL

 Compiling translates your source code into Microsoft Intermediate Language (MSIL)
and generates the required metadata.

7. .NET Core – Code Execution

.NET Core

 23

 Metadata describes the types in your code, including the definition of each type, the

signatures of each type's members, the members that your code references, and other

data that the runtime uses at execution time.

 The runtime locates and extracts the metadata from the file as well as from framework

class libraries (FCL) as needed during execution.

.NET Core

 24

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

