GRAPH THEORY - CONNECTIVITY

http://www.tutorialspoint.com/graph theory/graph theory connectivity.htm

Copyright © tutorialspoint.com

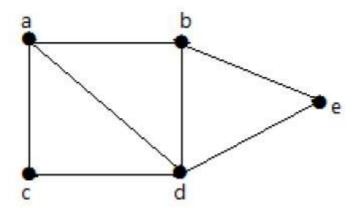
Whether it is possible to traverse a graph from one vertex to another is determined by how a graph is connected. Connectivity is a basic concept in Graph Theory. Connectivity defines whether a graph is connected or disconnected. It has subtopics based on edge and vertex, known as edge connectivity and vertex connectivity. Let us discuss them in detail.

Connectivity

A graph is said to be **connected if there is a path between every pair of vertex**. From every vertex to any other vertex, there should be some path to traverse. That is called the connectivity of a graph. A graph with multiple disconnected vertices and edges is said to be disconnected.

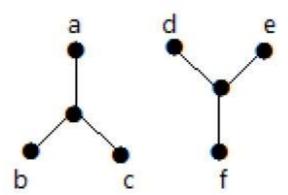
Example 1

In the following graph, it is possible to travel from one vertex to any other vertex. For example, one can traverse from vertex 'a' to vertex 'e' using the path 'a-b-e'.



Example 2

In the following example, traversing from vertex 'a' to vertex 'f' is not possible because there is no path between them directly or indirectly. Hence it is a disconnected graph.



Cut Vertex

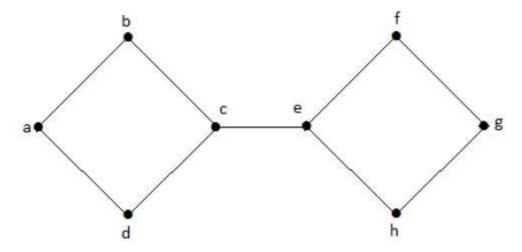
Let 'G' be a connected graph. A vertex $V \in G$ is called a cut vertex of 'G', if 'G-V' Delete'V' from'G' results in a disconnected graph. Removing a cut vertex from a graph breaks it in to two or more graphs.

Note – Removing a cut vertex may render a graph disconnected.

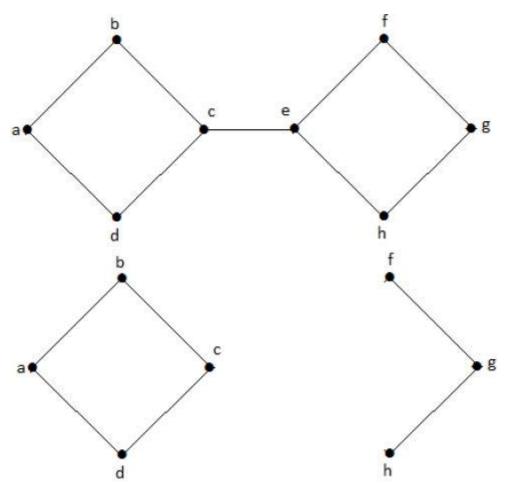
A connected graph 'G' may have at most n-2 cut vertices.

Example

In the following graph, vertices 'e' and 'c' are the cut vertices.



By removing 'e' or 'c', the graph will become a disconnected graph.



Without 'g', there is no path between vertex 'c' and vertex 'h' and many other. Hence it is a disconnected graph with cut vertex as 'e'. Similarly, 'c' is also a cut vertex for the above graph.

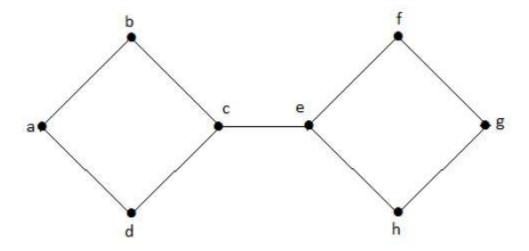
Cut Edge Bridge

Let 'G' be a connected graph. An edge 'e' \in G is called a cut edge if 'G-e' results in a disconnected graph.

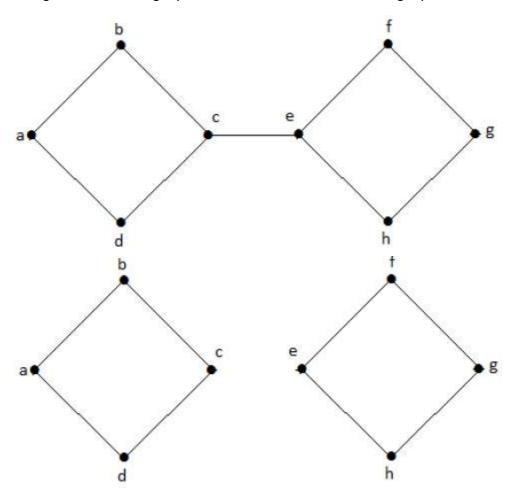
If removing an edge in a graph results in to two or more graphs, then that edge is called a Cut Edge.

Example

In the following graph, the cut edge is [c, e]



By removing the edge *c*, *e* from the graph, it becomes a disconnected graph.



In the above graph, removing the edge c, e breaks the graph into two which is nothing but a disconnected graph. Hence, the edge c, e is a cut edge of the graph.

Note – Let 'G' be a connected graph with 'n' vertices, then

- a cut edge $e \in G$ if and only if the edge 'e' is not a part of any cycle in G.
- the maximum number of cut edges possible is 'n-1'.
- whenever cut edges exist, cut vertices also exist because at least one vertex of a cut edge is a cut vertex.
- if a cut vertex exists, then a cut edge may or may not exist.

Cut Set of a Graph

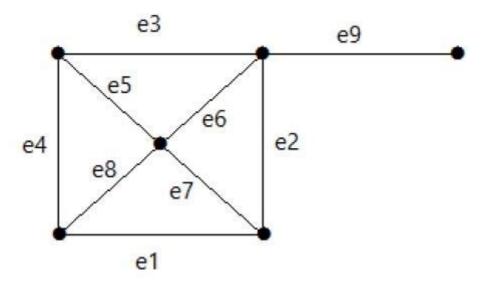
Let 'G' = V, E be a connected graph. A subset E' of E is called a cut set of G if deletion of all the

edges of E' from G makes G disconnect.

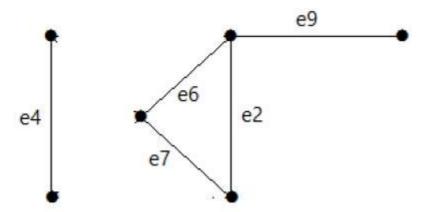
If deleting a certain number of edges from a graph makes it disconnected, then those deleted edges are called the cut set of the graph.

Example

Take a look at the following graph. Its cut set is $E1 = \{e1, e3, e5, e8\}$.



After removing the cut set E1 from the graph, it would appear as follows -



Similarly there are other cut sets that can disconnect the graph -

- E3 = {e9} Smallest cut set of the graph.
- $E4 = \{e3, e4, e5\}$

Edge Connectivity

Let 'G' be a connected graph. The minimum number of edges whose removal makes 'G' disconnected is called edge connectivity of G.

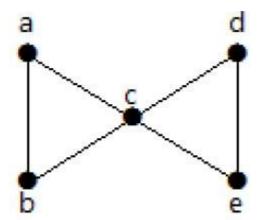
Notation $-\lambda G$

In other words, the **number of edges in a smallest cut set of G** is called the edge connectivity of G.

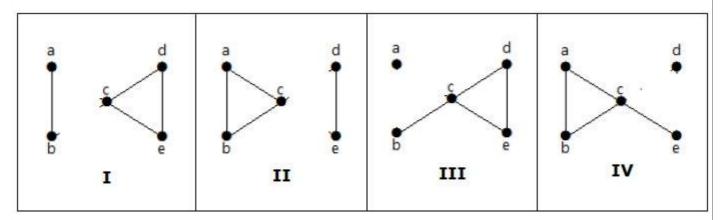
If 'G' has a cut edge, then λG is 1. edgeconnectivity of G.

Example

Take a look at the following graph. By removing two minimum edges, the connected graph becomes disconnected. Hence, its edge connectivity $\lambda(G)$ is 2.



Here are the four ways to disconnect the graph by removing two edges -



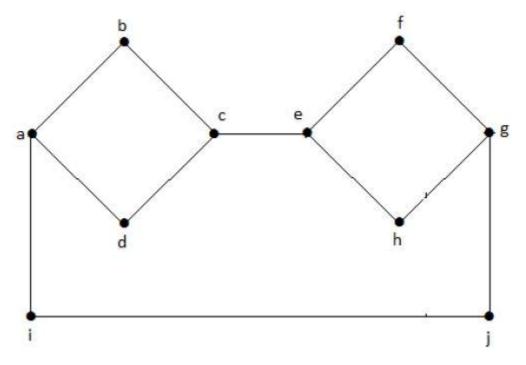
Vertex Connectivity

Let 'G' be a connected graph. The minimum number of vertices whose removal makes 'G' either disconnected or reduces 'G' in to a trivial graph is called its vertex connectivity.

Notation - KG

Example

In the above graph, removing the vertices 'e' and 'i' makes the graph disconnected.



If G has a cut vertex, then KG = 1.

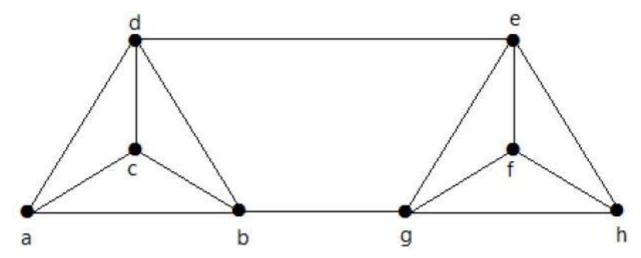
Notation - For any connected graph G,

$$KG \le \lambda G \le \delta G$$

Vertex connectivity K(G), edge connectivity $\lambda(G)$, minimum number of degrees of $G\delta(G)$.

Example

Calculate λG and KG for the following graph –



Solution

From the graph,

$$\delta G = 3$$

$$KG \le \lambda G \le \delta G = 3$$
 1

$$KG \ge 2$$

3

Deleting the edges $\{d, e\}$ and $\{b, h\}$, we can disconnect G.

Therefore,

$$\lambda G = 2$$

$$2 \le \lambda G \le \delta G = 2$$

From 2 and 2 vartay connectivity KC - 2

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js