
http://www.tutorialspoint.com/hive/hiveql_joins.htm Copyright © tutorialspoint.com

HIVEQL - SELECT-JOINSHIVEQL - SELECT-JOINS

JOIN is a clause that is used for combining specific fields from two tables by using values common
to each one. It is used to combine records from two or more tables in the database. It is more or
less similar to SQL JOIN.

Syntax

join_table:

 table_reference JOIN table_factor [join_condition]
 | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference
 join_condition
 | table_reference LEFT SEMI JOIN table_reference join_condition
 | table_reference CROSS JOIN table_reference [join_condition]

Example
We will use the following two tables in this chapter. Consider the following table named
CUSTOMERS..

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Consider another table ORDERS as follows:

+-----+---------------------+-------------+--------+
|OID | DATE | CUSTOMER_ID | AMOUNT |
+-----+---------------------+-------------+--------+
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
+-----+---------------------+-------------+--------+

There are different types of joins given as follows:

JOIN
LEFT OUTER JOIN
RIGHT OUTER JOIN
FULL OUTER JOIN

JOIN
JOIN clause is used to combine and retrieve the records from multiple tables. JOIN is same as
OUTER JOIN in SQL. A JOIN condition is to be raised using the primary keys and foreign keys of the
tables.

The following query executes JOIN on the CUSTOMER and ORDER tables, and retrieves the records:

hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT

http://www.tutorialspoint.com/hive/hiveql_joins.htm

FROM CUSTOMERS c JOIN ORDERS o
ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+----+----------+-----+--------+
| ID | NAME | AGE | AMOUNT |
+----+----------+-----+--------+
3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560
4	Chaitali	25	2060
+----+----------+-----+--------+

LEFT OUTER JOIN
The HiveQL LEFT OUTER JOIN returns all the rows from the left table, even if there are no matches
in the right table. This means, if the ON clause matches 0 zero records in the right table, the JOIN still
returns a row in the result, but with NULL in each column from the right table.

A LEFT JOIN returns all the values from the left table, plus the matched values from the right table,
or NULL in case of no matching JOIN predicate.

The following query demonstrates LEFT OUTER JOIN between CUSTOMER and ORDER tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE
FROM CUSTOMERS c
LEFT OUTER JOIN ORDERS o
ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+----+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+----+----------+--------+---------------------+
1	Ramesh	NULL	NULL
2	Khilan	1560	2009-11-20 00:00:00
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL
7	Muffy	NULL	NULL
+----+----------+--------+---------------------+

RIGHT OUTER JOIN
The HiveQL RIGHT OUTER JOIN returns all the rows from the right table, even if there are no
matches in the left table. If the ON clause matches 0 zero records in the left table, the JOIN still
returns a row in the result, but with NULL in each column from the left table.

A RIGHT JOIN returns all the values from the right table, plus the matched values from the left
table, or NULL in case of no matching join predicate.

The following query demonstrates RIGHT OUTER JOIN between the CUSTOMER and ORDER tables.

notranslate"> hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c RIGHT OUTER
JOIN ORDERS o ON c. ID = o. CUSTOMERID;

On successful execution of the query, you get to see the following response:

+------+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+------+----------+--------+---------------------+
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

3	kaushik	1500	2009-10-08 00:00:00
2	Khilan	1560	2009-11-20 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
+------+----------+--------+---------------------+

FULL OUTER JOIN
The HiveQL FULL OUTER JOIN combines the records of both the left and the right outer tables that
fulfil the JOIN condition. The joined table contains either all the records from both the tables, or fills
in NULL values for missing matches on either side.

The following query demonstrates FULL OUTER JOIN between CUSTOMER and ORDER tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE
FROM CUSTOMERS c
FULL OUTER JOIN ORDERS o
ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+------+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+------+----------+--------+---------------------+
1	Ramesh	NULL	NULL
2	Khilan	1560	2009-11-20 00:00:00
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL
7	Muffy	NULL	NULL
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
2	Khilan	1560	2009-11-20 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
+------+----------+--------+---------------------+

Loading [MathJax]/jax/output/HTML-CSS/jax.js

