
http://www.tutorialspoint.com/jcl/jcl_job_statement.htm Copyright © tutorialspoint.com

JCL - JOB STATEMENTJCL - JOB STATEMENT

JOB Statement is the first control statement in a JCL. This gives the identity of the job to the
Operating System OS, in the spool and in the scheduler. The parameters in the JOB statement help
the Operating Systems in allocating the right scheduler, required CPU time and issuing
notifications to the user.

Syntax
Following is the basic syntax of a JCL JOB statement:

//Job-name JOB Positional-param, Keyword-param

Description
Let us see the description of the terms used in above JOB statement syntax.

Job-name
This gives an id to the job while submitting it to the OS. It is can be length of 1 to 8 with
alphanumeric characters and starts just after //.

JOB
This is the keyword to identify it as a JOB statement.

Positional-param
There are positional parameters, which can be of two types:

Positional
Parameter

Description

Account
information

This refers to the person or group to which the CPU time is owed. It is
set as per the rules of the company owning the mainframes. If it is
specified as ∗ , then it takes the id of the user, who has currently
logged into the Mainframe Terminal.

Programmer name This identifies the person or group, who is in charge of the JCL. This is
not a mandatory parameter and can be replaced by a comma.

Keyword-param
Following are the various keyword parameters, which can be used in JOB statement. You can use
one or more parameters based on requirements and they are separated by comma:

Keyword Parameter Description

CLASS
Based on the time duration and the number of resources required by
the job, companies assign different job classes. These can be visualized
as individual schedulers used by the OS to receive the jobs. Placing the
jobs in the right scheduler will aid in easy execution of the jobs. Some
companies have different classes for jobs in test and production
environment.

Valid values for CLASS parameter are A to Z characters and 0 to 9

http://www.tutorialspoint.com/jcl/jcl_job_statement.htm

numeric oflength1. Following is the syntax:

CLASS=0 to 9 | A to Z

PRTY
To specify the priority of the job within a job class. If this parameter is
not specified, then the job is added to the end of the queue in the
specified CLASS. Following is the syntax:

PRTY=N

Where N is a number in between 0 to 15 and higher the number, higher
is the priority.

NOTIFY
The system sends the success or failure message MaximumConditionCode
to the user specified in this parameter. Following is the syntax:

NOTIFY="userid | &SYSUID"

Here system sends the message to the user "userid" but if we use
NOTIFY = &SYSUID, then the message is sent to the user submitting the
JCL.

MSGCLASS
To specify the output destination for the system and Job messages
when the job is complete. Following is the syntax:

MSGCLASS=CLASS

Valid values of CLASS can be from "A" to "Z" and "0" to "9". MSGCLASS
= Y can be set as a class to send the job log to the JMR
JOBLOGManagementandRetrieval: arepositorywithinmainframestostorethejobstatistics.

MSGLEVEL
Specifies the type of messages to be written to the output destination
specified in the MSGCLASS. Following is the syntax:

MSGLEVEL=(ST, MSG)

ST = Type of statements written to output log

When ST = 0, Job statements only.

When ST = 1, JCL along with symbolic parameters expanded.

When ST = 2, Input JCL only.

MSG = Type of messages written to output log.

When MSG = 0, Allocation and Termination messages written
upon abnormal job completion.

When MSG = 1, Allocation and Termination messages written
irrespective of the nature of job completion.

TYPRUN
Specifies a special processing for the job. Following is the syntax:

TYPRUN = SCAN | HOLD

Where SCAN and HOLD has the following description

TYPRUN = SCAN checks the syntax errors of the JCL without

executing it.

TYPRUN = HOLD puts the job on HOLD in the job queue.To release
the job, "A" can be typed against the job in the SPOOL, which will
bring the job to execution.

TIME
Specifies the time span to be used by the processor to execute the job.
Following is the syntax:

TIME=mm, ss or TIME=ss

Where mm = minutes and ss = seconds

This parameter can be useful while testing a newly coded program. In
order to ensure that the program does not run for long because of
looping errors, a time parameter can be coded so that the program
abends when the specified CPU time is reached.

REGION
Specifies the address space required to run a job step within the job.
Following is the syntax:

REGION=nK | nM

Here, region can be specified as nK or nM where n is a number, K is
kilobyte and M is Megabyte.

When REGION = 0K or 0M, largest address space is provided for
execution.In critical applications, coding of 0K or 0M is prohibited to
avoid wasting the address space.

Example

//URMISAMP JOB (*),"tutpoint",CLASS=6,PRTY=10,NOTIFY=&SYSUID,
// MSGCLASS=X,MSGLEVEL=(1,1),TYPRUN=SCAN,
// TIME=(3,0),REGION=10K

Here, JOB statement is getting extended beyond the 70th position in a line,so we continue in the
next line which should start with "//" followed by one or more spaces.

Miscellaneous Parameters
There are few other parameters, which can be used with JOB Statement but they are not frequently
used:

ADDRSPC Type of storage used: Virtual or Real

BYTES Size of data to be written to output log and the action to be taken when
the size is exceeded.

LINES Maximum number of lines to be printed to output log.

PAGES Maximum number of pages to be printed to output log.

USER User id used to submit the job

PASSWORD Password of the user-id specified in the USER parameter.

COND and RESTART These are used in conditional job step processing and are explained in
detail while discussing conditional Processing.

Loading [MathJax]/jax/output/HTML-CSS/jax.js

