
http://www.tutorialspoint.com/jdbc/jdbc-quick-guide.htm Copyright © tutorialspoint.com

JDBC - QUICK GUIDEJDBC - QUICK GUIDE

What is JDBC?
JDBC stands for Java Database Connectivity, which is a standard Java API for database-
independent connectivity between the Java programming language and a wide range of
databases.

The JDBC library includes APIs for each of the tasks commonly associated with database usage:

Making a connection to a database

Creating SQL or MySQL statements

Executing that SQL or MySQL queries in the database

Viewing & Modifying the resulting records

Pre-Requisite:
You need to have good understanding on the following two subjects to learn JDBC:

Core JAVA Programming

SQL or MySQL Database

JDBC - Environment Setup:
Make sure you have done following setup:

Core JAVA Installation

SQL or MySQL Database Installation

Apart from the above you need to setup a database which you would use for your project.
Assuming this is EMP and you have created on table Employees within the same database.

Creating JDBC Application:
There are six steps involved in building a JDBC application which I'm going to brief in this tutorial:

Import the packages:
This requires that you include the packages containing the JDBC classes needed for database
programming. Most often, using import java.sql.* will suffice as follows:

//STEP 1. Import required packages
import java.sql.*;

Register the JDBC driver:
This requires that you initialize a driver so you can open a communications channel with the
database. Following is the code snippet to achieve this:

//STEP 2: Register JDBC driver
Class.forName("com.mysql.jdbc.Driver");

Open a connection:
This requires using the DriverManager.getConnection method to create a Connection object,
which represents a physical connection with the database as follows:

http://www.tutorialspoint.com/jdbc/jdbc-quick-guide.htm
/java/index.htm
/mysql/index.htm

//STEP 3: Open a connection
// Database credentials
static final String USER = "username";
static final String PASS = "password";
System.out.println("Connecting to database...");
conn = DriverManager.getConnection(DB_URL,USER,PASS);

Execute a query:
This requires using an object of type Statement or PreparedStatement for building and submitting
an SQL statement to the database as follows:

//STEP 4: Execute a query
System.out.println("Creating statement...");
stmt = conn.createStatement();
String sql;
sql = "SELECT id, first, last, age FROM Employees";
ResultSet rs = stmt.executeQuery(sql);

If there is an SQL UPDATE,INSERT or DELETE statement required, then following code snippet
would be required:

//STEP 4: Execute a query
System.out.println("Creating statement...");
stmt = conn.createStatement();
String sql;
sql = "DELETE FROM Employees";
ResultSet rs = stmt.executeUpdate(sql);

Extract data from result set:
This step is required in case you are fetching data from the database. You can use the appropriate
ResultSet.getXXX method to retrieve the data from the result set as follows:

//STEP 5: Extract data from result set
while(rs.next()){
 //Retrieve by column name
 int id = rs.getInt("id");
 int age = rs.getInt("age");
 String first = rs.getString("first");
 String last = rs.getString("last");

 //Display values
 System.out.print("ID: " + id);
 System.out.print(", Age: " + age);
 System.out.print(", First: " + first);
 System.out.println(", Last: " + last);
}

Clean up the environment:
You should explicitly close all database resources versus relying on the JVM's garbage collection as
follows:

//STEP 6: Clean-up environment
rs.close();
stmt.close();
conn.close();

First JDBC Program:
Based on the above steps, we can have following consolidated sample code which we can use as a
template while writing our JDBC code:

This sample code has been written based on the environment and database setup done in

Environment chapter.

//STEP 1. Import required packages
import java.sql.*;

public class FirstExample {
 // JDBC driver name and database URL
 static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
 static final String DB_URL = "jdbc:mysql://localhost/EMP";

 // Database credentials
 static final String USER = "username";
 static final String PASS = "password";

 public static void main(String[] args) {
 Connection conn = null;
 Statement stmt = null;
 try{
 //STEP 2: Register JDBC driver
 Class.forName("com.mysql.jdbc.Driver");

 //STEP 3: Open a connection
 System.out.println("Connecting to database...");
 conn = DriverManager.getConnection(DB_URL,USER,PASS);

 //STEP 4: Execute a query
 System.out.println("Creating statement...");
 stmt = conn.createStatement();
 String sql;
 sql = "SELECT id, first, last, age FROM Employees";
 ResultSet rs = stmt.executeQuery(sql);

 //STEP 5: Extract data from result set
 while(rs.next()){
 //Retrieve by column name
 int id = rs.getInt("id");
 int age = rs.getInt("age");
 String first = rs.getString("first");
 String last = rs.getString("last");

 //Display values
 System.out.print("ID: " + id);
 System.out.print(", Age: " + age);
 System.out.print(", First: " + first);
 System.out.println(", Last: " + last);
 }
 //STEP 6: Clean-up environment
 rs.close();
 stmt.close();
 conn.close();
 }catch(SQLException se){
 //Handle errors for JDBC
 se.printStackTrace();
 }catch(Exception e){
 //Handle errors for Class.forName
 e.printStackTrace();
 }finally{
 //finally block used to close resources
 try{
 if(stmt!=null)
 stmt.close();
 }catch(SQLException se2){
 }// nothing we can do
 try{
 if(conn!=null)
 conn.close();
 }catch(SQLException se){
 se.printStackTrace();
 }//end finally try

 }//end try
 System.out.println("Goodbye!");
}//end main
}//end FirstExample

Now let us compile above example as follows:

C:\>javac FirstExample.java
C:\>

When you run FirstExample, it produces following result:

C:\>java FirstExample
Connecting to database...
Creating statement...
ID: 100, Age: 18, First: Zara, Last: Ali
ID: 101, Age: 25, First: Mahnaz, Last: Fatma
ID: 102, Age: 30, First: Zaid, Last: Khan
ID: 103, Age: 28, First: Sumit, Last: Mittal
C:\>

SQLException Methods:
A SQLException can occur both in the driver and the database. When such an exception occurs, an
object of type SQLException will be passed to the catch clause.

The passed SQLException object has the following methods available for retrieving additional
information about the exception:

Method Description

getErrorCode Gets the error number associated with the exception.

getMessage Gets the JDBC driver's error message for an error
handled by the driver or gets the Oracle error number
and message for a database error.

getSQLState Gets the XOPEN SQLstate string. For a JDBC driver
error, no useful information is returned from this
method. For a database error, the five-digit XOPEN
SQLstate code is returned. This method can return
null.

getNextException Gets the next Exception object in the exception chain.

printStackTrace Prints the current exception, or throwable, and its
backtrace to a standard error stream.

printStackTracePrintStreams Prints this throwable and its backtrace to the print
stream you specify.

printStackTracePrintWriterw Prints this throwable and its backtrace to the print
writer you specify.

By utilizing the information available from the Exception object, you can catch an exception and
continue your program appropriately. Here is the general form of a try block:

try {
 // Your risky code goes between these curly braces!!!
}
catch(Exception ex) {
 // Your exception handling code goes between these
 // curly braces, similar to the exception clause

 // in a PL/SQL block.
}
finally {
 // Your must-always-be-executed code goes between these
 // curly braces. Like closing database connection.
}

JDBC - Data Types:
The following table summarizes the default JDBC data type that the Java data type is converted to
when you call the setXXX method of the PreparedStatement or CallableStatement object or the
ResultSet.updateXXX method.

SQL JDBC/Java setXXX updateXXX

VARCHAR java.lang.String setString updateString

CHAR java.lang.String setString updateString

LONGVARCHAR java.lang.String setString updateString

BIT boolean setBoolean updateBoolean

NUMERIC java.math.BigDecimal setBigDecimal updateBigDecimal

TINYINT byte setByte updateByte

SMALLINT short setShort updateShort

INTEGER int setInt updateInt

BIGINT long setLong updateLong

REAL float setFloat updateFloat

FLOAT float setFloat updateFloat

DOUBLE double setDouble updateDouble

VARBINARY byte[] setBytes updateBytes

BINARY byte[] setBytes updateBytes

DATE java.sql.Date setDate updateDate

TIME java.sql.Time setTime updateTime

TIMESTAMP java.sql.Timestamp setTimestamp updateTimestamp

CLOB java.sql.Clob setClob updateClob

BLOB java.sql.Blob setBlob updateBlob

ARRAY java.sql.Array setARRAY updateARRAY

REF java.sql.Ref SetRef updateRef

STRUCT java.sql.Struct SetStruct updateStruct

JDBC 3.0 has enhanced support for BLOB, CLOB, ARRAY, and REF data types. The ResultSet object
now has updateBLOB, updateCLOB, updateArray, and updateRef methods that enable you to
directly manipulate the respective data on the server.

The setXXX and updateXXX methods enable you to convert specific Java types to specific JDBC
data types. The methods, setObject and updateObject, enable you to map almost any Java type to
a JDBC data type.

ResultSet object provides corresponding getXXX method for each data type to retrieve column
value. Each method can be used with column name or by its ordinal position.

SQL JDBC/Java setXXX getXXX

VARCHAR java.lang.String setString getString

CHAR java.lang.String setString getString

LONGVARCHAR java.lang.String setString getString

BIT boolean setBoolean getBoolean

NUMERIC java.math.BigDecimal setBigDecimal getBigDecimal

TINYINT byte setByte getByte

SMALLINT short setShort getShort

INTEGER int setInt getInt

BIGINT long setLong getLong

REAL float setFloat getFloat

FLOAT float setFloat getFloat

DOUBLE double setDouble getDouble

VARBINARY byte[] setBytes getBytes

BINARY byte[] setBytes getBytes

DATE java.sql.Date setDate getDate

TIME java.sql.Time setTime getTime

TIMESTAMP java.sql.Timestamp setTimestamp getTimestamp

CLOB java.sql.Clob setClob getClob

BLOB java.sql.Blob setBlob getBlob

ARRAY java.sql.Array setARRAY getARRAY

REF java.sql.Ref SetRef getRef

STRUCT java.sql.Struct SetStruct getStruct

JDBC - Batch Processing:
Batch Processing allows you to group related SQL statements into a batch and submit them with
one call to the database.

When you send several SQL statements to the database at once, you reduce the amount of
communication overhead, thereby improving performance.

JDBC drivers are not required to support this feature. You should use the
DatabaseMetaData.supportsBatchUpdates method to determine if the target database
supports batch update processing. The method returns true if your JDBC driver supports this
feature.

The addBatch method of Statement, PreparedStatement, and CallableStatement is used to
add individual statements to the batch. The executeBatch is used to start the execution of
all the statements grouped together.

The executeBatch returns an array of integers, and each element of the array represents
the update count for the respective update statement.

Just as you can add statements to a batch for processing, you can remove them with the
clearBatch method. This method removes all the statements you added with the addBatch
method. However, you cannot selectively choose which statement to remove.

JDBC - Streaming Data:
A PreparedStatement object has the ability to use input and output streams to supply parameter
data. This enables you to place entire files into database columns that can hold large values, such
as CLOB and BLOB data types.

There are following methods which can be used to stream data:

setAsciiStream: This method is used to supply large ASCII values.

setCharacterStream: This method is used to supply large UNICODE values.

setBinaryStream: This method is used to supply large binary values.

The setXXXStream method requires an extra parameter, the file size, besides the parameter
placeholder. This parameter informs the driver how much data should be sent to the database
using the stream.

For a detail on all these concept, you need to go through the complete tutorial.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

