

Kotlin

i

About the Tutorial

Kotlin is a programming language introduced by JetBrains, the official designer of the most

intelligent Java IDE, named Intellij IDEA. This is a strongly statically typed language that

runs on JVM. In 2017, Google announced Kotlin is an official language for android

development.

Kotlin is an open source programming language that combines object -oriented

programming and functional features into a unique platform. The content is divided into

various chapters that contain related topics with simple and useful examples.

Audience

This tutorial has been prepared for the beginners to help them understand the basics of

Kotlin programming language. After completing this tutorial, you will find yourself at a

moderate level of expertise in Kotlin, from where you can take yourself to the next levels.

Prerequisites

Before proceeding with this tutorial you should have a basic understanding of Java

programming language. Although it is a beginners’ tutorial, we assume that the readers

have a reasonable exposure to any programming environment and knowledge of basic

concepts such as variables, commands, syntax, etc. We strongly recommend that you gain

some basic knowledge of Java programming language before proceeding with Kotlin

programming.

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Kotlin

ii

Table of Contents

About the Tutorial... i

Audience ... i

Prerequisites .. i

Copyright & Disclaimer .. i

Table of Contents ... ii

1. KOTLIN - OVERVIEW 1

Advant ages & Disadvantages ..1

2. KOTLIN - ENVIRONMENT SETUP................................ 2

3. KOTLIN - ARCHITECTURE 7

4. KOTLIN - BASIC TYPES 8

Numbers...8

Characters ..9

Boolean ... 10

Strings .. 10

Arrays... 11

Collections .. 12

Ranges ... 13

5. KOTLIN - CONTROL FLOW 15

If - Else ... 15

Use of When ... 16

For Loop... 17

While Loop and Do-While Loop ... 18

Use of Return, Break, Continue.. 20

Kotlin

iii

6. KOTLIN - CLASS & OBJECT 23

Nested Class ... 24

Inner Class... 25

Anonymous Inner Class.. 26

Type Aliases .. 27

7. KOTLIN - CONSTRUCTORS 28

8. KOTLIN - INHERITANCE 31

9. KOTLIN - INTERFACE................................ 34

10. KOTLIN - VISIBILITY CONTROL 37

11. KOTLIN - EXTENSION 39

Function Extension.. 39

Object Extension ... 40

12. KOTLIN - DATA CLASSES 42

13. KOTLIN - SEALED CLASS 43

14. KOTLIN - GENERICS 44

15. KOTLIN - DELEGATION 46

Property Delegation ... 47

16. KOTLIN - FUNCTIONS................................ 50

Lambda Function ... 51

Inline Function ... 51

17. KOTLIN - DESTRUCTURING DECLARATIONS 53

18. KOTLIN - EXCEPTION HANDLING 54

Kotlin

1

Kotlin is a new open source programming language like Java, JavaScript, etc. It is a high

level strongly statically typed language that combines functional and technical part in a

same place. Currently, Kotlin targets Java and JavaScript. It runs on JVM.

Kotlin is influenced by other programming languages such as Java, Scala, Groovy, Gosu,

etc. The syntax of Kotlin may not be exactly similar to JAVA, however, internally Kotlin is

reliant on the existing Java Class library to produce wonderful results for the programmers.

Kotlin provides interoperability, code safety, and clarity to the developers around the

world.

Advantages & Disadvantages

Following are some of the advantages of using Kotlin for your application development.

Easy Language: Kotlin is a functional language and very easy to learn. The syntax is

pretty much similar to Java, hence it is very easy to remember. Kotlin is more expressive ,

which makes your code more readable and understandable.

Concise: Kotlin is based on JVM and it is a functional language. Thus, it reduce lots of

boiler plate code used in other programming languages.

Runtime and Performance: Better performance and small runtime.

Interoperability: Kotlin is mature enough to build an interoperable application in a less

complex manner.

Brand New: Kotlin is a brand new language that gives developers a fresh start. It is not

a replacement of Java, though it is developed over JVM. It is accepted as the first official

language of android development. Kotlin can be defined as - Kotlin= JAVA +extra updated

new features.

Following are some of the disadvantages of Kotlin.

Namespace declaration: Kotlin allows developers to declare the functions at the top

level. However, whenever the same function is declared in many places of your application,

then it is hard to understand which function is being called.

No Static Declaration: Kotlin does not have usual static handling modifier like Java,

which can cause some problem to the conventional Java developer.

1. Kotlin - Overview

Kotlin

2

In this chapter, we will set up our local environment to start with Kotlin programming.

However, we already have set up Kotlin environment online (coding ground), so that

compilation and execution of all available examples online can be easier. This gives

confidence as you can check the result with different options. Feel free to modify any

example and execute it online. Following is the screenshot of our online coding ground.

2. Kotlin - Environment Setup

Kotlin

3

However, if you still want to use Kotlin offline in your local system, then you need

to execute the following steps to configure your local workspace.

Step 1: Java 8 installation.

Kotlin runs on JVM, hence. it is really necessary to use JDK 8 for your local Kotlin

development. Please refer to the official website of oracle to download and install JDK 8

or an above version. You might have to set the environment variable for JAVA such that it

can work properly. To verify your installation in Windows operating system, hit “java –

version” in the command prompt and as an output it will show you the java versio n

installed in your system.

Step 2: IDE installation.

There are a number of IDE available over the internet. You can use any of your choice.

You can find the download link of different IDE in the following table.

IDE Name Installation Link

NetBeans https://netbeans.org/downloads/

Eclipse https://www.eclipse.org/downloads/

Intellij https://www.jetbrains.com/idea/download/#section=windows

It is always recommended to use the recent software version to drag out maximum facility

from it.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://netbeans.org/downloads/
https://www.eclipse.org/downloads/
https://www.jetbrains.com/idea/download/#section=windows

Kotlin

4

Step 3: Configuring Eclipse.

Open Eclipse and go to “Eclipse Market Place”. You will find the following screen.

Search for Kotlin in the search box and install the same in your local system. It might take

some time depending on the internet speed. You may have to restart your Eclipse, once it

is successfully installed.

Kotlin

5

Step 4: Kotlin Project.

Once Eclipse is successfully restarted and Kotlin is installed, you will be able to create a

Kotlin project on the fly. Go to File  New  Others and select “Kotlin project” from the

list.

Once the project setup is done, you can create a Kotlin file under “SRC” folder. Left-click

on the “Src” folder and hit “new”. You will get an option for Kotlin file, otherwise you may

have to search from the “others”. Once the new file is created, your project directory will

be look like the following.

Kotlin

6

Your development environment is ready now. Go ahead and add the following piece of

code in the “Hello.kt” file .

fun main(args: Array<String>) {

 println("Hello, World!")

}

Run it as a Kotlin application and see the output in the console as shown in the following

screenshot. For better understanding and availability, we will be using our coding ground

tool.

Kotlin

7

Kotlin is a programming language and has its own architecture to allocate memory and

produce a quality output to the end user. Following are the different scenarios where Kotlin

compiler will work differently, whenever it is targeting different other kind of languages

such as Java and JavaScript.

Kotlin compiler creates a byte code and that byte code can run on the JVM, which is exactly

equal to the byte code generated by the Java .class file. Whenever two byte coded file

runs on the JVM, they can communicate with each other and this is how an interoperable

feature is established in Kotlin for Java.

Whenever Kotlin targets JavaScript, the Kotlin compiler converts the .kt file into ES5.1

and generates a compatible code for JavaScript. Kotlin compiler is capable of creating

platform basis compatible codes via LLVM.

3. Kotlin - Architecture

Kotlin

8

In this chapter, we will learn about the basic data types available in Kotlin programming

language.

Numbers

The representation of numbers in Kotlin is pretty similar to Java, however, Kotlin does not

allow internal conversion of different data types. Following table lists different variable

lengths for different numbers.

Type Size

Double 64

Float 32

Long 64

Int 32

Short 16

Byte 8

In the following example, we will see how Kotlin works with different data types. Please

enter the following set of code in our coding ground.

fun main(args: Array<String>) {

 val a: Int = 10000

 val d: Double = 100.00

 val f: Float = 100.00f

 val l: Long = 1000000004

 val s: Short = 10

 val b: Byte = 1

 println("Your Int Value is "+a);

 println("Your Double Value is "+d);

 println("Your Float Value is "+f);

 println("Your Long Value is "+l);

 println("Your Short Value is "+s);

 println("Your Byte Value is "+b);

 }

4. Kotlin - Basic Types

Kotlin

9

When you run the above piece of code in the coding ground, it will generate the following

output in the web console.

Characters

Kotlin represents character using char. Character should be declared in a single quote like

‘c’. Please enter the following code in our coding ground and see how Kotlin interprets the

character variable. Character variable cannot be declared like number variables. Kotlin

variable can be declared in two ways - one using “var” and another using “val”.

fun main(args: Array<String>) {

 val letter: Char // defining a variable

 letter = 'A' // Assigning a value to it

 println("$letter")

}

The above piece of code will yield the following output in the browser output window.

Kotlin

10

Boolean

Boolean is very simple like other programming languages. We have only two values for

Boolean – either true or false. In the following example, we will see how Kotlin interprets

Boolean.

fun main(args: Array<String>) {

 val letter: Boolean // defining a variable

 letter = true // Assinging a value to it

 println("Your character value is "+"$letter")

}

The above piece of code will yield the following output in the browser.

Strings

Strings are character arrays. Like Java, they are immutable in nature. We have two kinds

of string available in Kotlin - one is called raw String and another is called escaped

String. In the following example, we will make use of these strings.

fun main(args: Array<String>) {

 var rawString :String ="I am Raw String!"

 val escapedString : String ="I am escaped String!\n"

 println("Hello!"+escapedString)

 println("Hey!!"+rawString)

}

The above example of escaped String allows to provide extra line space after the first print

statement. Following will be the output in the browser.

Kotlin

11

Arrays

Arrays are a collection of homogeneous data. Like Java, Kotlin supports arrays of different

data types. In the following example, we will make use of different arrays.

fun main(args: Array<String>) {

 val numbers: IntArray = intArrayOf(1, 2, 3, 4, 5)

 println("Hey!! I am array Example"+numbers[2])

}

The above piece of code yields the following output. The indexing of the array is similar to

other programming languages. Here, we are searching for a second index, whose value is

“3”.

Kotlin

12

Collections

Collection is a very important part of the data structure, which makes the software

development easy for engineers. Kotlin has two types of collection - one is immutable

collection (which means lists, maps and sets that cannot be editable) and another is

mutable collection (this type of collection is editable). It is very important to keep in

mind the type of collection used in your application, as Kotlin system does not represent

any specific difference in them.

fun main(args: Array<String>) {

 val numbers: MutableList<Int> = mutableListOf(1, 2, 3) //mutable List

 val readOnlyView: List<Int> = numbers // immutable list

 println("my immutable list--"+numbers) // prints "[1, 2, 3]"

 numbers.add(4)

 println("my immutable list after addition --"+numbers) // prints
"[1, 2, 3, 4]"

 println(readOnlyView)

 readOnlyView.clear() // -> does not compile

// gives error

}

The above piece of code will yield the following output in the browser. It gives an error

when we try to clear the mutable list of collection.

In collection, Kotlin provides some useful methods such as first(), last(), filter(), etc.

All these methods are self-descriptive and easy to implement. Moreover, Kotlin follows the

same structure such as Java while implementing collection. You are free to implement any

collection of your choice such as Map and Set.

Kotlin

13

In the following example, we have implemented Map and Set using different built-in

methods.

fun main(args: Array<String>) {

 val items = listOf(1, 2, 3, 4)

 println("First Element of our list----"+items.first())

 println("First Element of our list----"+items.last())

 println("Even Numbers of our List----"+items.filter { it % 2 == 0 }) //

returns [2, 4]

 val readWriteMap = hashMapOf("foo" to 1, "bar" to 2)

 println(readWriteMap["foo"]) // prints "1"

 val strings = hashSetOf("a", "b", "c", "c")

 println("My Set Values are"+strings)

}

The above piece of code yields the following output in the browser.

Ranges

Ranges is another unique characteristic of Kotlin. Like Haskell, it provides an operator that

helps you iterate through a range. Internally, it is implemented using rangeTo() and its

operator form is (..).

Kotlin

14

In the following example, we will see how Kotlin interprets this range operator.

fun main(args: Array<String>) {

 val i:Int =2

 for (j in 1..4)

 print(j) // prints "1234"

 if (i in 1..10) { // equivalent of 1 <= i && i <= 10

 println("we found your number --"+i)

}

}

The above piece of code yields the following output in the browser.

Kotlin

15

In the previous chapter we have learned about different types of data types available in

Kotlin system. In this chapter, we will discuss different types of control flow mechanism

available in the Kotlin.

If - Else

Kotlin is a functional language hence like every functional language in Kotlin “ if” is an

expression, it is not a keyword. The expression “if” will return a value whenever necessary .

Like other programming language, “if-else” block is used as an initial conditional checking

operator. In the following example, we will compare two variables and provide the required

output accordingly.

 fun main(args: Array<String>) {

 val a:Int=5

 val b:Int=2

 var max: Int

 if (a > b) {

 max = a

 } else {

 max = b

 }

 print("Maximum of"+max)

 // As expression

 // val max = if (a > b) a else b

}

The above piece of code yields the following output as a result in the browser. Our example

also contains another line of code, which depicts how to use “If” statement as an

expression.

5. Kotlin - Control Flow

Kotlin

16

Use of When

If you are familiar with other programming languages, then you might have heard of the

term switch statement, which is basically a conditional operator when multiple conditions

can be applied on a particular variable. “when” operator matches the variable value

against the branch conditions. If it is satisfying the branch condition then it will execute

the statement inside that scope. In the following example, we will learn more about “when”

in Kotlin.

fun main(args: Array<String>) {

 val x:Int=5

 when (x) {

 1 -> print("x == 1")

 2 -> print("x == 2")

 else -> { // Note the block

 print("x is neither 1 nor 2")

 }

}

}

The above piece of code yields the following output in the browser.

Kotlin

17

In the above example, Kotlin compiler matches the value of x with the given branches. If

it is not matching any of the branches, then it will execute the else part. Practically, when

is equivalent to multiple if block. Kotlin provides another flexibility to the developer, where

the developer can provide multiple checks in the same line by providing “,” inside the

checks. Let us modify the above example as follows.

fun main(args: Array<String>) {

 val x:Int=5

 when (x) {

 1,2 -> print(" Value of X either 1,2")

 else -> { // Note the block

 print("x is neither 1 nor 2")

 }

}

}

Run the same in the browser, which will yield the following output in the browser.

For Loop

Loop is such an invention that provides the flexibility to iterate through any kind of data

structure. Like other programming languages, Kotlin also provides many kinds of Looping

methodology, however, among them “For” is the most successful one. The implementat ion

and use of For loop is conceptually similar to Java for loop. The following example shows

how we can use the same in real-life examples.

fun main(args: Array<String>) {

 val items = listOf(1, 2, 3, 4)

 for (i in items) println("values of the array"+i)

}

In the above piece of code, we have declared one list named as “items” and using for loop

we are iterating through that defined list and printing its value in the browser. Following

is the output.

Kotlin

18

Following is another example of code, where we are using some library function to make

our development work easier than ever before.

fun main(args: Array<String>) {

 val items = listOf(1, 22, 83, 4)

 for ((index, value) in items.withIndex()){

 println("the element at $index is $value")

}

}

Once we compile and execute the above piece of code in our coding ground, it will yield

the following output in the browser.

While Loop and Do-While Loop

While and Do-While work exactly in a similar way like they do in other programming

languages. The only difference between these two loops is, in case of Do-while loop the

condition will be tested at the end of the loop. The following example shows the usage of

the While loop.

Kotlin

19

fun main(args: Array<String>) {

 var x:Int=0

 println("Example of While Loop--")

 while(x<=10){

 println(x)

 x++

 }

}

The above piece of code yields the following output in the browser.

Kotlin also has another loop called Do-While loop, where the loop body will be executed

once, only then the condition will be checked. The following example shows the usage of

the Do-while loop.

fun main(args: Array<String>) {

 var x:Int=0

 do{

 x=x+10

 println("I am inside Do block---"+x)

 }while(x<=50)

}

Kotlin

20

The above piece of code yields the following output in the browser. In the above code,

Kotlin compiler will execute the DO block, then it will go for condition checking in while

block.

Use of Return, Break, Continue

If you are familiar with any programming language, then you must have an idea of

different keywords that help us implement good control flow in the application. Following

are the different keywords that can be used to control the loops or any other types of

control flow.

Return: Return is a keyword that returns some value to the calling function from the

called function. In the following example, we will implement this scenario using our Kotlin

coding ground.

fun main(args: Array<String>) {

 var x:Int=10

 println("The value of X is--"+doubleMe(x))

}

fun doubleMe(x:Int):Int{

 return 2*x;

}

In the above piece of code, we are calling another function and multiplying the input with

2, and returning the resultant value to the called function that is our main function. Kotlin

defines the function in a different manner that we will look at in a subsequent chapter. For

now, it is enough to understand that the above code will generate the following output in

the browser.

Kotlin

21

Continue & Break: Continue and break are the most vital part of a logical problem. The

“break” keyword terminates the controller flow if some condition has failed and “continue”

does the opposite. All this operation happens with immediate visibility. Kotlin is smarter

than other programming languages, wherein the developer can apply more than one label

as visibility. The following piece of code shows how we are implementing this label in

Kotlin.

fun main(args: Array<String>) {

 println("Example of Break and Continue")

 myLabel@ for(x in 1..10){ // appling the custom label

 if(x==5){

 println("I am inside if block with value"+x+"\n-- hence it will

close the operation")

 break@myLabel //specifing the label

 }else{

 println("I am inside else block with value"+x)

 continue@myLabel

 }

 }

 }

The above piece of code yields the following output in the browser.

Kotlin

22

As you can see, the controller continues the loop, until and unless the value of x is 5. Once

the value of x reaches 5, it starts executing the if block and once the break statement is

reached, the entire control flow terminates the program execution.

Kotlin

23

In this chapter, we will learn the basics of Object-Oriented Programming (OOP) using

Kotlin. We will learn about class and its object and how to play with that object. By

definition of OOP, a class is a blueprint of a runtime entity and object is its state, which

includes both its behavior and state. In Kotlin, class declaration consists of a class header

and a class body surrounded by curly braces, similar to Java.

Class myClass {// class Header

// class Body

}

Like Java, Kotlin also allows to create several objects of a class and you are free to include

its class members and functions. We can control the visibility of the class members

variables using different keywords that we will learn in Chapter 10 – Visibility Control. In

the following example, we will create one class and its object through which we will access

different data members of that class.

class myClass {

 // property (data member)

 private var name: String = "Tutorials.point"

 // member function

 fun printMe() {

 print("You are at the best Learning website Named-"+name)

 }

}

fun main(args: Array<String>) {

 val obj = myClass() // create obj object of myClass class

 obj.printMe()

}

The above piece of code will yield the following output in the browser, where we are calling

printMe() of myClass using its own object.

6. Kotlin - Class & Object

Kotlin

24

Nested Class

By definition, when a class has been created inside another class, then it is called as a

nested class. In Kotlin, nested class is by default static , hence, it can be accessed without

creating any object of that class. In the following example, we will see how Kotlin interprets

our nested class.

fun main(args: Array<String>) {

 val demo = Outer.Nested().foo() // caling nested class method

 print(demo)

}

class Outer {

 class Nested {

 fun foo() = "Welcome to The TutorialsPoint.com"

 }

}

The above piece of code will yield the following output in the browser.

Kotlin

25

Inner Class

When a nested class is marked as a “inner”, then it will be called as an Inner class. An

inner class can be accessed by the data member of the outer class. In the following

example, we will be accessing the data member of the outer class.

fun main(args: Array<String>) {

 val demo = Outer().Nested().foo() // caling nested class method

 print(demo)

}

class Outer {

 private val welcomeMessage: String = "Welcome to the TutorialsPoint.com"

 inner class Nested {

 fun foo() = welcomeMessage

 }

}

The above piece of code will yield the following output in the browser, where we are calling

the nested class using the default constructor provided by Kotlin compilers at the time of

compiling.

Kotlin

26

Anonymous Inner Class

Anonymous inner class is a pretty good concept that makes the life of a programmer very

easy. Whenever we are implementing an interface, the concept of anonymous inner block

comes into picture. The concept of creating an object of interface using runtime object

reference is known as anonymous class. In the following example, we will create an

interface and we will create an object of that interface using Anonymous Inner class

mechanism.

fun main(args: Array<String>) {

 var programmer :Human = object:Human // creating an instance of the

interface

 {

 override fun think(){ // overiding the think

method

 print("I am an example of Anonymous Inner

Class ")

 }

 }

 programmer.think()

}

interface Human{

 fun think()

}

The above piece of code will yield the following output in the browser.

Kotlin

27

Type Aliases

Type aliases are a property of Kotlin compiler. It provides the flexibility of creating a new

name of an existing type, it does not create a new type. If the type name is too long, you

can easily introduce a shorter name and use the same for future usage. Type aliases is

really helpful for complex type. In the latest version, Kotlin revoked the support for type

aliases, however, if you are using an old version of Kotlin you may have use it like the

following -

typealias NodeSet = Set<Network.Node>

typealias FileTable<K> = MutableMap<K, MutableList<File>>

Kotlin

28

In this chapter, we will learn about constructors in Kotlin. Kotlin has two types of

constructor - one is the primary constructor and the other is the secondary

constructor. One Kotlin class can have one primary constructor, and one or more

secondary constructor. Java constructor initializes the member variables, however, in

Kotlin the primary constructor initializes the class, whereas the secondary constructor

helps to include some extra logic while initializing the same. The primary constructor can

be declared at class header level as shown in the following example.

class Person(val firstName: String, var age: Int) {

 // class body

}

In the above example, we have declared the primary constructor inside the parenthesis.

Among the two fields, first name is read-only as it is declared as “val”, while the field age

can be edited. In the following example, we will use the primary constructor.

fun main(args: Array<String>) {

 val person1 = Person("TutorialsPoint.com", 15)

 println("First Name = ${person1.firstName}")

 println("Age = ${person1.age}")

}

class Person(val firstName: String, var age: Int) {

}

The above piece of code will automatically initialize the two variables and provide the

following output in the browser.

7. Kotlin - Constructors

Kotlin

29

As mentioned earlier, Kotlin allows to create one or more secondary constructors for your

class. This secondary constructor is created using the “constructor” keyword. It is required

whenever you want to create more than one constructor in Kotlin or whenever you want

to include more logic in the primary constructor and you cannot do that because the

primary constructor may be called by some other class. Take a look at the following

example, where we have created a secondary constructor and are using the above

example to implement the same.

fun main(args: Array<String>) {

 val HUman = HUman("TutorialsPoint.com", 25)

 print("${HUman.message}"+"${HUman.firstName}"+"Welcome to the example of
Secondary constructor, Your Age is-${HUman.age}")

}

class HUman(val firstName: String, var age: Int) {

 val message:String ="Hey!!!"

 constructor(name : String , age :Int ,message :String):this(name,age){

 }

}

Note: Any number of secondary constructors can be created, however, all of those

constructors should call the primary constructor directly or indirectly.

Kotlin

30

The above piece of code will yield the following output in the browser.

Kotlin

31

In this chapter, we will learn about inheritance. By definition, we all know that inheritance

means accruing some properties of the mother class into the child class. In Kotlin, the

base class is named as “Any”, which is the super class of the ‘any’ default class declared

in Kotlin. Like all other OOPS, Kotlin also provides this functionality using one keyword

known as “:”.

Everything in Kotlin is by default final, hence, we need to use the keyword “open” in front

of the class declaration to make it allowable to inherit. Take a look at the following example

of inheritance.

import java.util.Arrays

open class ABC{

 fun think (){

 print("Hey!! i am thiking ")

 }

}

class BCD: ABC(){ // inheritence happend using default constructor

}

fun main(args: Array<String>) {

 var a=BCD()

 a.think()

}

The above piece of code will yield the following output in the browser.

8. Kotlin - Inheritance

Kotlin

32

Now, what if we want to override the think() method in the child class. Then, we need to

consider the following example where we are creating two classes and override one of its

function into the child class.

import java.util.Arrays

open class ABC{

 open fun think (){

 print("Hey!! i am thinking ")

 }

}

class BCD: ABC(){ // inheritance happens using default constructor

 override fun think(){

 print("I Am from Child")

 }

}

fun main(args: Array<String>) {

 var a=BCD()

 a.think()

}

Kotlin

33

The above piece of code will call the child class inherited method and it will yield the

following output in the browser. Like Java, Kotlin too doesn’t allow multiple inheritances.

Kotlin

34

In this chapter, we will learn about the interface in Kotlin. In Kotlin, the interface works

exactly similar to Java 8, which means they can contain method implementation as well

as abstract methods declaration. An interface can be implemented by a class in order to

use its defined functionality. We have already introduced an example with an interface in

Chapter 6 - section “anonymous inner class”. In this chapter, we will learn more about it.

The keyword “interface” is used to define an interface in Kotlin as shown in the following

piece of code.

interface ExampleInterface {

 var myVar: String // abstract property

 fun absMethod() // abstract method

 fun sayHello() = "Hello there" // method with default implementation

}

In the above example, we have created one interface named as “ExampleInterface” and

inside that we have a couple of abstract properties and methods all together. Look at the

function named “sayHello()”, which is an implemented method.

In the following example, we will be implementing the above interface in a class.

interface ExampleInterface {

 var myVar: Int // abstract property

 fun absMethod():String // abstract method

 fun hello() {

 println("Hello there, Welcome to TutorialsPoint.Com!")

 }

}

class InterfaceImp : ExampleInterface {

 override var myVar: Int = 25

 override fun absMethod() = "Happy Learning "

9. Kotlin - Interface

Kotlin

35

}

fun main(args: Array<String>) {

 val obj = InterfaceImp()

 println("My Variable Value is = ${obj.myVar}")

 print("Calling hello(): ")

 obj.hello()

 print("Message from the Website-- ")

 println(obj.absMethod())

}

The above piece of code will yield the following output in the browser .

As mentioned earlier, Kotlin doesn’t support multiple inheritances, however, the same

thing can be achieved by implementing more than two interfaces at a time.

In the following example, we will create two interfaces and later we will implement both

the interfaces into a class.

interface A {

 fun printMe() {

 println(" method of interface A")

 }

}

Kotlin

36

interface B {

 fun printMeToo() {

 println("I am another Method from interface B")

 }

}

// implements two interfaces A and B

class multipleInterfaceExample: A, B

fun main(args: Array<String>) {

 val obj = multipleInterfaceExample()

 obj.printMe()

 obj.printMeToo()

}

In the above example, we have created two sample interfaces A, B and in the class named

“multipleInterfaceExample” we have implemented two interfaces declared earlier. The

above piece of code will yield the following output in the browser.

Kotlin

37

In this chapter, we will learn about different modifiers available in Kotlin language. Access

modifier is used to restrict the usage of the variables, methods and class used in the

application. Like other OOP programming language, this modifier is applicable at multiple

places such as in the class header or method declaration. There are four access modifiers

available in Kotlin.

Private

The classes, methods, and packages can be declared with a private modifier. Once

anything is declared as private, then it will be accessible within its immediate scope. For

instance, a private package can be accessible within that specific file. A private class or

interface can be accessible only by its data members, etc.

private class privateExample {

 private val i = 1

 private val doSomething() {

 }

}

In the above example, the class “privateExample” and the variable i both can be

accessible only in the same Kotlin file, where its mentioned as they all are declared as

private in the declaration block.

Protected

Protected is another access modifier for Kotlin, which is currently not available for top level

declaration like any package cannot be protected. A protected class or interface is visible

to its subclass only.

class A {

 protected val i = 1

}

class B : A() {

 fun getValue() : Int {

 return i

 }

}

10. Kotlin - Visibility Control

Kotlin

38

In the above example, the variable “i” is declared as protected, hence, it is only visible to

its subclass.

Internal

Internal is a newly added modifier introduced in Kotlin. If anything is marked as internal,

then that specific field will be in the internal field. An Internal package is visible only inside

the module under which it is implemented. An internal class interface is visible only by

other class present inside the same package or the module. In the following example, we

will see how to implement an internal method.

class internalExample {

 internal val i = 1

 internal fun doSomething() {

 }

}

In the above example, the method named “doSomething” and the variable is mentioned

as internal, hence, these two fields can be accessible only inside the package under which

it is declared.

Public

Public modifier is accessible from anywhere in the project workspace. If no access modifier

is specified, then by default it will be in the public scope. In all our previous examples, we

have not mentioned any modifier, hence, all of them are in the public scope. Following is

an example to understand more on how to declare a public variable or method.

class publicExample {

 val i = 1

 fun doSomething() {

 }

}

In the above example, we have not mentioned any modifier, thus all these methods and

variables are by default public.

Kotlin

39

In this chapter, we will learn about another new feature of Kotlin named “Extension”. Using

extension, we will be able to add or remove some method functionality even without

inheriting or modifying them. Extensions are resolved statistically. It does not actually

modify the existing class, but it creates a callable function that can be called with a dot

operation.

Function Extension

In function extension, Kotlin allows to define a method outside of the main class. In the

following example, we will see how the extension is implemented at the functional level.

class Alien{

 var skills : String= "null"

 fun printMySkills(){

 print(skills)

 }

}

fun main(args: Array<String>) {

 var a1= Alien()

 a1.skills="JAVA"

 //a1.printMySkills()

 var a2= Alien()

 a2.skills="SQL"

 //a2.printMySkills()

 var a3= Alien()

 a3.skills=a1.addMySkills(a2)

 a3.printMySkills()

}

11. Kotlin - Extension

Kotlin

40

fun Alien.addMySkills(a:Alien):String{

 var a4=Alien()

 a4.skills=this.skills + " " +a.skills

 return a4.skills

}

In the above example, we don’t have any method inside “Alien” class named as

“addMySkills()”, however, we still are implementing the same method somewhere else

outside of the class, This is the magic of extension.

The above piece of code will generate the following output in the browser.

Object Extension

Kotlin provides another mechanism to implement static functionality of Java. This can be

achieved using the keyword “companion object”. Using this mechanism, we can create an

object of a class inside a factory method and later we can just call that method using the

reference of the class name. In the following example, we will create a “companion

object”.

fun main(args: Array<String>) {

 println("Heyyy!!!"+A.show())

}

class A{

 companion object{

 fun show():String{

 return("You are learning Kotlin from TutorialsPoint.com")

 }

 }

}

Kotlin

41

The above piece of code will yield the following output in the browser.

The above example seems like static in Java, however, in real-time we are creating an

object as a member variable of that same class. This is why it is also included under

extension property and can be alternatively called as an object extension. You are basically

extending the object of the same class to use some of the member functions.

Kotlin

42

In this chapter, we will learn more about Data classes of Kotlin programming language. A

class can be marked as a Data class whenever it is marked as ”data”. This type of class

can be used to hold the basic data apart . Other than this, it does not provide any other

functionality.

All the data classes need to have one primary constructor and all the primary constructor

should have at least one parameter. Whenever a class is marked as data, we can use some

of the inbuilt function of that data class such as “toString()”,”hasCode()”, etc. Any data

class cannot have a modifier like abstract and open or internal. Data class can be extended

to other classes too. In the following example, we will create one data class.

fun main(args: Array<String>) {

 val book: Book = Book("Kotlin", "TutorialPoint.com", 5)

 println("Name of the Book is--"+book.name) // "Kotlin"

 println("Puclisher Name--"+book.publisher) // "TutorialPoint.com"

 println("Review of the book is--"+book.reviewScore) // 5

 book.reviewScore = 7

 println("Printing all the info all together--"+book.toString()) //using
inbuilt function of the data class

 println("Example of the HasCode function--"+book.hashCode())

}

data class Book(val name: String, val publisher: String, var reviewScore: Int)

The above piece of code will yield the following output in the browser, where we have

created one data class to hold some of the data, and from the main function we have

accessed all of its data members.

12. Kotlin - Data Classes

Kotlin

43

In this chapter, we will learn about another class type called “Sealed” class. This type of

class is used to represent a restricted class hierarchy. Sealed allows the developers to

maintain a data type of a predefined type. To make a sealed class, we need to use the

keyword “sealed” as a modifier of that class. A sealed class can have its own subclass but

all those subclasses need to be declared inside the same Kotlin file along with the sealed

class. In the following example, we will see how to use a sealed class.

sealed class MyExample {

 class OP1 : MyExample() // MyExmaple class can be of two types only

 class OP2 : MyExample()

}

fun main(args: Array<String>) {

 val obj: MyExample = MyExample.OP2()

 val output = when (obj) { // defining the object of the class depending on

the inuputs

 is MyExample.OP1 -> "Option One has been chosen"

 is MyExample.OP2 -> "option Two has been chosen"

 }

 println(output)

}

In the above example, we have one sealed class named “MyExample”, which can be of

two types only - one is “OP1” and another one is “OP2”. In the main class, we are creating

an object in our class and assigning its type at runtime. Now, as this “MyExample” class

is sealed, we can apply the “when ” clause at runtime to implement the final output.

In sealed class, we need not use any unnecessary “else” statement to complex out the

code. The above piece of code will yield the following output in the browser.

13. Kotlin - Sealed Class

Kotlin

44

Like Java, Kotlin provides higher order of variable typing called as Generics. In this

chapter, we will learn how Kotlin implements Generics and how as a developer we can use

those functionalities provided inside the generics library. Implementation wise, generics is

pretty similar to Java but Kotlin developer has introduced two new keywords “out” and

“in” to make Kotlin codes more readable and easy for the developer.

In Kotlin, a class and a type are totally different concepts. As per the example, List is a

class in Kotlin, whereas List<String> is a type in Kotlin. The following example depicts

how generics is implemented in Kotlin.

fun main(args: Array<String>) {

 val integer: Int = 1

 val number: Number = integer

 print(number)

}

In the above code, we have declared one “integer” and later we have assigned that

variable to a number variable. This is possible because “Int” is a subclass of Number class,

hence the type conversion happens automatically at runtime and produces the output as

“1”.

Let us learn something more about generics in Kotlin. It is better to go for generic data

type whenever we are not sure about the data type we are going to use in the application.

Generally, in Kotlin generics is defined by <T> where “T” stands for template, which can

be determined dynamically by Kotlin complier. In the following example, we will see how

to use generic data types in Kotlin programming language.

fun main(args: Array<String>) {

 var objet=genericsExample<String>("JAVA")

 var objet1=genericsExample<Int>(10)

}

class genericsExample<T>(input:T){

 init{

 println("I am getting called with the value "+input)

 }

}

14. Kotlin - Generics

Kotlin

45

In the above piece of code, we are creating one class with generic return type, which is

represented as <T>. Take a look at the main method, where we have dynamically defined

its value at the run by proving the value type, while creating the object of this class. This

is how generics is interpreted by Kotlin compiler. We will get the following output in the

browser, once we run this code in our coding ground.

When we want to assign the generic type to any of its super type, then we need to use

“out” keyword, and when we want to assign the generic type to any of its sub-type, then

we need to use “in” keyword. In the following example, we will use “out” keyword.

Similarly, you can try using “in” keyword.

fun main(args: Array<String>) {

 var objet1=genericsExample<Int>(10)

 var object2=genericsExample<Double>(10.00)

 println(objet1)

 println(object2)

}

class genericsExample<out T>(input:T){

 init{

 println("I am getting called with the value "+input)

 }

}

The above code will yield the following output in the browser.

Kotlin

46

Kotlin supports “delegation” design pattern by introducing a new keyword “by”. Using this

keyword or delegation methodology, Kotlin allows the derived class to access all the

implemented public methods of an interface through a specific object. The following

example demonstrates how this happens in Kotlin.

interface Base {

 fun printMe() //abstract method

}

class BaseImpl(val x: Int) : Base {

 override fun printMe() { println(x) } //implementation of the method

}

class Derived(b: Base) : Base by b // delegating the public method on the

object b

fun main(args: Array<String>) {

 val b = BaseImpl(10)

 Derived(b).printMe() // prints 10 :: accessing the printMe() method

}

In the example, we have one interface “Base” with its abstract method named “printme()”.

In the BaseImpl class, we are implementing this “printme()” and later from another class

we are using this implementation using “by” keyword.

The above piece of code will yield the following output in the browser.

15. Kotlin - Delegation

Kotlin

47

Property Delegation

In the previous section, we have learned about the delegation design pattern using “by”

keyword. In this section, we will learn about delegation of properties using some standard

methods mentioned in Kotlin library.

Delegation means passing the responsibility to another class or method. When a property

is already declared in some places, then we should reuse the same code to initialize them.

In the following examples, we will use some standard delegation methodology provided

by Kotlin and some standard library function while implementing delegation in our

examples.

Using Lazy()

Lazy is a lambda function which takes a property as an input and in return gives an

instance of Lazy<T>, where <T> is basically the type of the properties it is using. Let us

take a look at the following to understand how it works.

val myVar: String by lazy {

 "Hello"

}

fun main(args: Array<String>) {

 println(myVar +" My dear friend")

}

In the above piece of code, we are passing a variable “myVar” to the Lazy function, which

in return assigns the value to its object and returns the same to the main function.

Following is the output in the browser.

Kotlin

48

Delegetion.Observable()

Observable() takes two arguments to initialize the object and returns the same to the

called function. In the following example, we will see how to use Observable() method in

order to implement delegation.

import kotlin.properties.Delegates

class User {

 var name: String by Delegates.observable("Welcome to Tutorialspoint.com") {

 prop, old, new ->

 println("$old -> $new")

 }

}

fun main(args: Array<String>) {

 val user = User()

 user.name = "first"

 user.name = "second"

}

The above piece of code will yield the following output in the browser.

In general, the syntax is the expression after the “by” keyword is delegated. The get()

and set() methods of the variable p will be delegated to its getValue() and setValue()

methods defined in the Delegate class.

class Example {

 var p: String by Delegate()

}

Kotlin

49

For the above piece of code, following is the delegate class that we need to generate in

order to assign the value in the variable p.

class Delegate {

 operator fun getValue(thisRef: Any?, property: KProperty<*>): String {

 return "$thisRef, thank you for delegating '${property.name}' to me!"

 }

 operator fun setValue(thisRef: Any?, property: KProperty<*>, value: String)
{

 println("$value has been assigned to '${property.name} in $thisRef.'")

 }

}

While reading, getValue() method will be called and while setting the variable setValue()

method will be called.

Kotlin

50

Kotlin is a statically typed language, hence, functions play a great role in it. We are pretty

familiar with function, as we are using function throughout the examples. Function is

declared with the keyword “fun”. Like any other OOP, it also needs a return type and an

option argument list.

In the following example, we are defining a function called MyFunction and from the main

function we are calling this function and passing some argument.

fun main(args: Array<String>) {

 println(MyFunction("tutorialsPoint.com"))

}

fun MyFunction(x: String): String {

 var c:String ="Hey!! Welcome To ---"

 return (c+x)

}

The above piece of code will yield the following output in the browser.

The function should be declared as follows -

fun <nameOfFunction>(<argument>:<argumentType>):<ReturnType>

Following are some of the different types of function available in Kotlin.

16. Kotlin - Functions

Kotlin

51

Lambda Function

Lambda is a high level function that drastically reduces the boiler plate code while declaring

a function and defining the same. Kotlin allows you to define your own lambda. In Kotlin,

you can declare your lambda and pass that lambda to a function.

Take a look at the following example.

fun main(args: Array<String>) {

 val mylambda :(String)->Unit ={s:String->print(s)}

 val v:String="TutorialsPoint.com"

 mylambda(v)

}

In the above code, we have created our own lambda known as “mylambda” and we have

passed one variable to this lambda, which is of type String and contains a value

“TutorialsPoint.com”.

The above piece of code will yield the following output in the browser.

Inline Function

The above example shows the basic of the lambda expression that we can use in Kotlin

application. Now, we can pass a lambda to another function to get our output which makes

the calling function an inline function.

 Take a look at the following example.

fun main(args: Array<String>) {

 val mylambda:(String)->Unit ={s:String->print(s)}

 val v:String="TutorialsPoint.com"

 myFun(v,mylambda) / /passing lambda as a parameter of another function

}

fun myFun(a :String, action: (String)->Unit){ //passing lambda

Kotlin

52

 print("Heyyy!!!")

 action(a)// call to lambda function

}

The above piece of code will yield the following output in the browser. Using inline function,

we have passed a lambda as a parameter. Any other function can be made an inline

function using the “inline” keyword.

Kotlin

53

Kotlin contains many features of other programming languages. It allows you to declare

multiple variables at once. This technique is called Destructuring declaration.

Following is the basic syntax of the destructuring declaration.

val (name, age) = person

In the above syntax, we have created an object and defined all of them together in a single

statement. Later, we can use them as follows.

println(name)

println(age)

Now, let us see how we can use the same in our real-life application. Consider the following

example where we are creating one Student class with some attributes and later we will

be using them to print the object values.

fun main(args: Array<String>) {

 val s=Student("TutorialsPoint.com","Kotlin")

 val (name,subject)=s

 println("You are learning "+subject+" from "+name)

}

data class Student(val a :String,val b: String){

 var name:String=a

 var subject:String=b

}

 The above piece of code will yield the following output in the browser.

17. Kotlin - Destructuring Declarations

Kotlin

54

Exception handling is a very important part of a programming language. This technique

restricts our application from generating the wrong output at runtime. In this chapter, we

will learn how to handle runtime exception in Kotlin. The exceptions in Kotlin is pretty

similar to the exceptions in Java. All the exceptions are descendants of the “Throwable”

class. Following example shows how to use exception handling technique in Kotlin.

fun main(args: Array<String>) {

 try{

 val myVar:Int=12

 val v:String="Tutorialspoint.com"

 v.toInt()

 }catch(e:Exception){

 e.printStackTrace()

 }finally{

 println("Exception Handeling in Kotlin")

 }

}

In the above piece of code, we have declared a String and later tied that string into the

integer, which is actually a runtime exception. Hence, we will get the following output in

the browser.

Note: Like Java, Kotlin also executes the finally block after executing the catch block.

18. Kotlin - Exception Handling

