
MapReduce

MapReduce

 i

About the Tutorial

MapReduce is a programming paradigm that runs in the background of Hadoop to

provide scalability and easy data-processing solutions. This tutorial explains the

features of MapReduce and how it works to analyze Big Data.

Audience

This tutorial has been prepared for professionals aspiring to learn the basics of Big

Data Analytics using the Hadoop Framework and become a Hadoop Developer.

Software Professionals, Analytics Professionals, and ETL developers are the key

beneficiaries of this course.

Prerequisites

It is expected that the readers of this tutorial have a good understanding of the

basics of Core Java and that they have prior exposure to any of the Linux operating

system flavors.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial. If

you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

MapReduce

 i

Table of Contents

About the Tutorial ... i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer .. i

Table of Contents ... i

1. MAPREDUCE – INTRODUCTION .. 1

What is Big Data? .. 1

Why MapReduce? ... 1

How MapReduce Works? .. 2

MapReduce-Example .. 4

2. MAPREDUCE – ALGORITHM .. 6

Sorting .. 6

Searching .. 7

Indexing .. 8

TF-IDF.. 9

3. MAPREDUCE – INSTALLATION ... 11

Verifying JAVA Installation .. 11

Installing Java ... 11

Verifying Hadoop Installation ... 13

Downloading Hadoop ... 13

Installing Hadoop in Pseudo Distributed mode ... 13

Verifying Hadoop Installation ... 17

4. MAPREDUCE – API .. 20

JobContext Interface ... 20

 MapReduce

 ii

Job Class ... 20

Constructors ... 21

Mapper Class .. 22

Reducer Class .. 23

5. MAPREDUCE – HADOOP IMPLEMENTATION ... 24

MapReduce Algorithm .. 24

MapReduce Implementation .. 25

6. MAPREDUCE – PARTITIONER .. 33

Partitioner .. 33

MapReduce Partitioner Implementation .. 33

7. MAPREDUCE – COMBINERS .. 46

Combiner .. 46

How Combiner Works? ... 46

MapReduce Combiner Implementation .. 47

Compilation and Execution ... 53

8. MAPREDUCE – HADOOP ADMINISTRATION .. 55

HDFS Monitoring... 55

MapReduce Job Monitoring .. 57

 MapReduce

 3

MapReduce is a programming model for writing applications that can process Big

Data in parallel on multiple nodes. MapReduce provides analytical capabilities for

analyzing huge volumes of complex data.

What is Big Data?

Big Data is a collection of large datasets that cannot be processed using traditional

computing techniques. For example, the volume of data Facebook or YouTube need

require it to collect and manage on a daily basis, can fall under the category of Big

Data. However, Big Data is not only about scale and volume, it also involves one or

more of the following aspects − Velocity, Variety, Volume, and Complexity.

Why MapReduce?

Traditional Enterprise Systems normally have a centralized server to store and

process data. The following illustration depicts a schematic view of a traditional

enterprise system. Traditional model is certainly not suitable to process huge volumes

of scalable data and cannot be accommodated by standard database servers.

Moreover, the centralized system creates too much of a bottleneck while processing

multiple files simultaneously.

Google solved this bottleneck issue using an algorithm called MapReduce. MapReduce

divides a task into small parts and assigns them to many computers. Later, the

results are collected at one place and integrated to form the result dataset.

1. MAPREDUCE – INTRODUCTION

 MapReduce

 4

How MapReduce Works?

The MapReduce algorithm contains two important tasks, namely Map and Reduce.

 The Map task takes a set of data and converts it into another set of data, where

individual elements are broken down into tuples (key-value pairs).

 The Reduce task takes the output from the Map as an input and combines

those data tuples (key-value pairs) into a smaller set of tuples.

The reduce task is always performed after the map job.

Let us now take a close look at each of the phases and try to understand their

significance.

 MapReduce

 5

 Input Phase − Here we have a Record Reader that translates each record in

an input file and sends the parsed data to the mapper in the form of key-value

pairs.

 Map − Map is a user-defined function, which takes a series of key-value pairs

and processes each one of them to generate zero or more key-value pairs.

 Intermediate Keys − The key-value pairs generated by the mapper are

known as intermediate keys.

 Combiner − A combiner is a type of local Reducer that groups similar data

from the map phase into identifiable sets. It takes the intermediate keys from

the mapper as input and applies a user-defined code to aggregate the values

in a small scope of one mapper. It is not a part of the main MapReduce

algorithm; it is optional.

 Shuffle and Sort − The Reducer task starts with the Shuffle and Sort step. It

downloads the grouped key-value pairs onto the local machine, where the

Reducer is running. The individual key-value pairs are sorted by key into a

larger data list. The data list groups the equivalent keys together so that their

values can be iterated easily in the Reducer task.

 Reducer − The Reducer takes the grouped key-value paired data as input and

runs a Reducer function on each one of them. Here, the data can be

aggregated, filtered, and combined in a number of ways, and it requires a wide

 MapReduce

 6

range of processing. Once the execution is over, it gives zero or more key-

value pairs to the final step.

 Output Phase − In the output phase, we have an output formatter that

translates the final key-value pairs from the Reducer function and writes them

onto a file using a record writer.

Let us try to understand the two tasks Map & Reduce with the help of a small diagram

−

MapReduce-Example

Let us take a real-world example to comprehend the power of MapReduce. Twitter

receives around 500 million tweets per day, which is nearly 3000 tweets per second.

The following illustration shows how Tweeter manages its tweets with the help of

MapReduce.

 MapReduce

 7

As shown in the illustration, the MapReduce algorithm performs the following actions

−

 Tokenize − Tokenizes the tweets into maps of tokens and writes them as key-

value pairs.

 Filter − Filters unwanted words from the maps of tokens and writes the

filtered maps as key-value pairs.

 Count − Generates a token counter per word.

 Aggregate Counters − Prepares an aggregate of similar counter values into

small manageable units.

 MapReduce

 8

The MapReduce algorithm contains two important tasks, namely Map and Reduce.

 The map task is done by means of Mapper Class

 The reduce task is done by means of Reducer Class.

Mapper class takes the input, tokenizes it, maps, and sorts it. The output of Mapper

class is used as input by Reducer class, which in turn searches matching pairs and

reduces them.

MapReduce implements various mathematical algorithms to divide a task into small

parts and assign them to multiple systems. In technical terms, MapReduce algorithm

helps in sending the Map & Reduce tasks to appropriate servers in a cluster.

These mathematical algorithms may include the following −

 Sorting

 Searching

 Indexing

 TF-IDF

Sorting

Sorting is one of the basic MapReduce algorithms to process and analyze data.

MapReduce implements sorting algorithm to automatically sort the output key-value

pairs from the mapper by their keys.

2. MAPREDUCE – ALGORITHM

 MapReduce

 9

 Sorting methods are implemented in the mapper class itself.

 In the Shuffle and Sort phase, after tokenizing the values in the mapper class,

theContext class (user-defined class) collects the matching valued keys as a

collection.

 To collect similar key-value pairs (intermediate keys), the Mapper class takes

the help of RawComparator class to sort the key-value pairs.

 The set of intermediate key-value pairs for a given Reducer is automatically

sorted by Hadoop to form key-values (K2, {V2, V2…}) before they are

presented to the Reducer.

Searching

Searching plays an important role in MapReduce algorithm. It helps in the combiner

phase (optional) and in the Reducer phase. Let us try to understand how Searching

works with the help of an example.

Example

The following example shows how MapReduce employs Searching algorithm to find

out the details of the employee who draws the highest salary in a given employee

dataset.

 Let us assume we have employee data in four different files − A, B, C, and D.

Let us also assume there are duplicate employee records in all four files

because of importing the employee data from all database tables repeatedly.

See the following illustration.

 The Map phase processes each input file and provides the employee data in

key-value pairs (<k, v> : <emp name, salary>). See the following illustration.

 MapReduce

 10

 The combiner phase (searching technique) will accept the input from the

Map phase as a key-value pair with employee name and salary. Using

searching technique, the combiner will check all the employee salary to find

the highest salaried employee in each file. See the following snippet.

<k: employee name, v: salary>

Max= the salary of an first employee. Treated as max salary

if(v(second employee).salary > Max){

 Max = v(salary);

}

else{

 Continue checking;

}

The expected result is as follows –

 Reducer phase − Form each file, you will find the highest salaried employee.

To avoid redundancy, check all the <k, v> pairs and eliminate duplicate

entries, if any. The same algorithm is used in between the four <k, v> pairs,

which are coming from four input files. The final output should be as follows −

<gopal, 50000>

 MapReduce

 11

Indexing

Normally indexing is used to point to a particular data and its address. It performs

batch indexing on the input files for a particular Mapper.

The indexing technique that is normally used in MapReduce is known as inverted

index.Search engines like Google and Bing use inverted indexing technique. Let us

try to understand how Indexing works with the help of a simple example.

Example

The following text is the input for inverted indexing. Here T[0], T[1], and t[2] are the

file names and their content are in double quotes.

T[0] = "it is what it is"

T[1] = "what is it"

T[2] = "it is a banana"

After applying the Indexing algorithm, we get the following output −

"a": {2}

"banana": {2}

"is": {0, 1, 2}

"it": {0, 1, 2}

"what": {0, 1}

Here "a": {2} implies the term "a" appears in the T[2] file. Similarly, "is": {0, 1, 2}

implies the term "is" appears in the files T[0], T[1], and T[2].

TF-IDF

TF-IDF is a text processing algorithm which is short for Term Frequency − Inverse

Document Frequency. It is one of the common web analysis algorithms. Here, the

term 'frequency' refers to the number of times a term appears in a document.

Term Frequency (TF)

It measures how frequently a particular term occurs in a document. It is calculated

by the number of times a word appears in a document divided by the total number

of words in that document.

 MapReduce

 12

TF(the) = (Number of times term the ‘the’ appears in a document) / (Total

number of terms in the document)

Inverse Document Frequency (IDF)

It measures the importance of a term. It is calculated by the number of documents

in the text database divided by the number of documents where a specific term

appears.

While computing TF, all the terms are considered equally important. That means, TF

counts the term frequency for normal words like “is”, “a”, “what”, etc. Thus we need

to know the frequent terms while scaling up the rare ones, by computing the following

−

IDF(the) = log_e(Total number of documents / Number of documents with term

‘the’ in it).

The algorithm is explained below with the help of a small example.

Example

Consider a document containing 1000 words, wherein the word hive appears 50

times. The TF for hive is then (50 / 1000) = 0.05.

Now, assume we have 10 million documents and the word hive appears in 1000 of

these. Then, the IDF is calculated as log (10,000,000 / 1,000) = 4.

The TF-IDF weight is the product of these quantities − 0.05 × 4 = 0.20.

 MapReduce

 13

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

