
http://www.tutorialspoint.com/map_reduce/map_reduce_partitioner.htm Copyright © tutorialspoint.com

MAPREDUCE - PARTITIONERMAPREDUCE - PARTITIONER

A partitioner works like a condition in processing an input dataset. The partition phase takes place
after the Map phase and before the Reduce phase.

The number of partitioners is equal to the number of reducers. That means a partitioner will divide
the data according to the number of reducers. Therefore, the data passed from a single partitioner
is processed by a single Reducer.

Partitioner
A partitioner partitions the key-value pairs of intermediate Map-outputs. It partitions the data using
a user-defined condition, which works like a hash function. The total number of partitions is same
as the number of Reducer tasks for the job. Let us take an example to understand how the
partitioner works.

MapReduce Partitioner Implementation
For the sake of convenience, let us assume we have a small table called Employee with the
following data. We will use this sample data as our input dataset to demonstrate how the
partitioner works.

Id Name Age Gender Salary

1201 gopal 45 Male 50,000

1202 manisha 40 Female 50,000

1203 khalil 34 Male 30,000

1204 prasanth 30 Male 30,000

1205 kiran 20 Male 40,000

1206 laxmi 25 Female 35,000

1207 bhavya 20 Female 15,000

1208 reshma 19 Female 15,000

1209 kranthi 22 Male 22,000

1210 Satish 24 Male 25,000

1211 Krishna 25 Male 25,000

1212 Arshad 28 Male 20,000

1213 lavanya 18 Female 8,000

We have to write an application to process the input dataset to find the highest salaried employee
by gender in different age groups forexample, below20, between21to30, above30.

Input Data
The above data is saved as input.txt in the “/home/hadoop/hadoopPartitioner” directory and
given as input.

1201 gopal 45 Male 50000

http://www.tutorialspoint.com/map_reduce/map_reduce_partitioner.htm

1202 manisha 40 Female 51000

1203 khaleel 34 Male 30000

1204 prasanth 30 Male 31000

1205 kiran 20 Male 40000

1206 laxmi 25 Female 35000

1207 bhavya 20 Female 15000

1208 reshma 19 Female 14000

1209 kranthi 22 Male 22000

1210 Satish 24 Male 25000

1211 Krishna 25 Male 26000

1212 Arshad 28 Male 20000

1213 lavanya 18 Female 8000

Based on the given input, following is the algorithmic explanation of the program.

Map Tasks
The map task accepts the key-value pairs as input while we have the text data in a text file. The
input for this map task is as follows −

Input − The key would be a pattern such as “any special key + filename + line number”
example: key = @ input1 and the value would be the data in that line
example: value = 1201\tgopal\t45\tMale\t50000.

Method − The operation of this map task is as follows −

Read the value recorddata, which comes as input value from the argument list in a string.

Using the split function, separate the gender and store in a string variable.

String[] str = value.toString().split("\t", -3);
String gender=str[3];

Send the gender information and the record data value as output key-value pair from the
map task to the partition task.

context.write(new Text(gender), new Text(value));

Repeat all the above steps for all the records in the text file.

Output − You will get the gender data and the record data value as key-value pairs.

Partitioner Task
The partitioner task accepts the key-value pairs from the map task as its input. Partition implies
dividing the data into segments. According to the given conditional criteria of partitions, the input
key-value paired data can be divided into three parts based on the age criteria.

Input − The whole data in a collection of key-value pairs.

key = Gender field value in the record.

value = Whole record data value of that gender.

Method − The process of partition logic runs as follows.

Read the age field value from the input key-value pair.

String[] str = value.toString().split("\t");
int age = Integer.parseInt(str[2]);

Check the age value with the following conditions.

Age less than or equal to 20
Age Greater than 20 and Less than or equal to 30.
Age Greater than 30.

if(age<=20)
{
 return 0;
}
else if(age>20 && age<=30)
{
 return 1 % numReduceTasks;
}
else
{
 return 2 % numReduceTasks;
}

Output − The whole data of key-value pairs are segmented into three collections of key-value
pairs. The Reducer works individually on each collection.

Reduce Tasks
The number of partitioner tasks is equal to the number of reducer tasks. Here we have three
partitioner tasks and hence we have three Reducer tasks to be executed.

Input − The Reducer will execute three times with different collection of key-value pairs.

key = gender field value in the record.

value = the whole record data of that gender.

Method − The following logic will be applied on each collection.

Read the Salary field value of each record.

String [] str = val.toString().split("\t", -3);
Note: str[4] have the salary field value.

Check the salary with the max variable. If str[4] is the max salary, then assign str[4] to max,
otherwise skip the step.

if(Integer.parseInt(str[4])>max)
{
 max=Integer.parseInt(str[4]);
}

Repeat Steps 1 and 2 for each key collection Male & Female are the key collections . After executing
these three steps, you will find one max salary from the Male key collection and one max
salary from the Female key collection.

context.write(new Text(key), new IntWritable(max));

Output − Finally, you will get a set of key-value pair data in three collections of different age
groups. It contains the max salary from the Male collection and the max salary from the Female

collection in each age group respectively.

After executing the Map, the Partitioner, and the Reduce tasks, the three collections of key-value
pair data are stored in three different files as the output.

All the three tasks are treated as MapReduce jobs. The following requirements and specifications
of these jobs should be specified in the Configurations −

Job name
Input and Output formats of keys and values
Individual classes for Map, Reduce, and Partitioner tasks

Configuration conf = getConf();

//Create Job
Job job = new Job(conf, "topsal");
job.setJarByClass(PartitionerExample.class);

// File Input and Output paths
FileInputFormat.setInputPaths(job, new Path(arg[0]));
FileOutputFormat.setOutputPath(job,new Path(arg[1]));

//Set Mapper class and Output format for key-value pair.
job.setMapperClass(MapClass.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);

//set partitioner statement
job.setPartitionerClass(CaderPartitioner.class);

//Set Reducer class and Input/Output format for key-value pair.
job.setReducerClass(ReduceClass.class);

//Number of Reducer tasks.
job.setNumReduceTasks(3);

//Input and Output format for data
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);

Example Program
The following program shows how to implement the partitioners for the given criteria in a
MapReduce program.

package partitionerexample;

import java.io.*;

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.*;

import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.output.*;

import org.apache.hadoop.util.*;

public class PartitionerExample extends Configured implements Tool
{
 //Map class

 public static class MapClass extends Mapper<LongWritable,Text,Text,Text>
 {
 public void map(LongWritable key, Text value, Context context)
 {
 try{
 String[] str = value.toString().split("\t", -3);
 String gender=str[3];
 context.write(new Text(gender), new Text(value));
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
 }

 //Reducer class

 public static class ReduceClass extends Reducer<Text,Text,Text,IntWritable>
 {
 public int max = -1;
 public void reduce(Text key, Iterable <Text> values, Context context) throws
IOException, InterruptedException
 {
 max = -1;

 for (Text val : values)
 {
 String [] str = val.toString().split("\t", -3);
 if(Integer.parseInt(str[4])>max)
 max=Integer.parseInt(str[4]);
 }

 context.write(new Text(key), new IntWritable(max));
 }
 }

 //Partitioner class

 public static class CaderPartitioner extends
 Partitioner < Text, Text >
 {
 @Override
 public int getPartition(Text key, Text value, int numReduceTasks)
 {
 String[] str = value.toString().split("\t");
 int age = Integer.parseInt(str[2]);

 if(numReduceTasks == 0)
 {
 return 0;
 }

 if(age<=20)
 {
 return 0;
 }
 else if(age>20 && age<=30)
 {
 return 1 % numReduceTasks;
 }
 else
 {
 return 2 % numReduceTasks;
 }
 }
 }

 @Override

 public int run(String[] arg) throws Exception
 {
 Configuration conf = getConf();

 Job job = new Job(conf, "topsal");
 job.setJarByClass(PartitionerExample.class);

 FileInputFormat.setInputPaths(job, new Path(arg[0]));
 FileOutputFormat.setOutputPath(job,new Path(arg[1]));

 job.setMapperClass(MapClass.class);

 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(Text.class);

 //set partitioner statement

 job.setPartitionerClass(CaderPartitioner.class);
 job.setReducerClass(ReduceClass.class);
 job.setNumReduceTasks(3);
 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);

 System.exit(job.waitForCompletion(true)? 0 : 1);
 return 0;
 }

 public static void main(String ar[]) throws Exception
 {
 int res = ToolRunner.run(new Configuration(), new PartitionerExample(),ar);
 System.exit(0);
 }
}

Save the above code as PartitionerExample.java in “/home/hadoop/hadoopPartitioner”. The
compilation and execution of the program is given below.

Compilation and Execution
Let us assume we are in the home directory of the Hadoop user forexample, /home/hadoop.

Follow the steps given below to compile and execute the above program.

Step 1 − Download Hadoop-core-1.2.1.jar, which is used to compile and execute the MapReduce
program. You can download the jar from mvnrepository.com.

Let us assume the downloaded folder is “/home/hadoop/hadoopPartitioner”

Step 2 − The following commands are used for compiling the program PartitionerExample.java
and creating a jar for the program.

$ javac -classpath hadoop-core-1.2.1.jar -d ProcessUnits.java
$ jar -cvf PartitionerExample.jar -C .

Step 3 − Use the following command to create an input directory in HDFS.

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir

Step 4 − Use the following command to copy the input file named input.txt in the input directory
of HDFS.

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/hadoopPartitioner/input.txt input_dir

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1

Step 5 − Use the following command to verify the files in the input directory.

$HADOOP_HOME/bin/hadoop fs -ls input_dir/

Step 6 − Use the following command to run the Top salary application by taking input files from
the input directory.

$HADOOP_HOME/bin/hadoop jar PartitionerExample.jar partitionerexample.PartitionerExample
input_dir/input.txt output_dir

Wait for a while till the file gets executed. After execution, the output contains a number of input
splits, map tasks, and Reducer tasks.

15/02/04 15:19:51 INFO mapreduce.Job: Job job_1423027269044_0021 completed successfully
15/02/04 15:19:52 INFO mapreduce.Job: Counters: 49

File System Counters

 FILE: Number of bytes read=467
 FILE: Number of bytes written=426777
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0

 HDFS: Number of bytes read=480
 HDFS: Number of bytes written=72
 HDFS: Number of read operations=12
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=6

Job Counters

 Launched map tasks=1
 Launched reduce tasks=3

 Data-local map tasks=1

 Total time spent by all maps in occupied slots (ms)=8212
 Total time spent by all reduces in occupied slots (ms)=59858
 Total time spent by all map tasks (ms)=8212
 Total time spent by all reduce tasks (ms)=59858

 Total vcore-seconds taken by all map tasks=8212
 Total vcore-seconds taken by all reduce tasks=59858

 Total megabyte-seconds taken by all map tasks=8409088
 Total megabyte-seconds taken by all reduce tasks=61294592

Map-Reduce Framework

 Map input records=13
 Map output records=13
 Map output bytes=423
 Map output materialized bytes=467

 Input split bytes=119

 Combine input records=0
 Combine output records=0

 Reduce input groups=6
 Reduce shuffle bytes=467
 Reduce input records=13
 Reduce output records=6

 Spilled Records=26
 Shuffled Maps =3

 Failed Shuffles=0
 Merged Map outputs=3
 GC time elapsed (ms)=224
 CPU time spent (ms)=3690

 Physical memory (bytes) snapshot=553816064
 Virtual memory (bytes) snapshot=3441266688

 Total committed heap usage (bytes)=334102528

Shuffle Errors

 BAD_ID=0
 CONNECTION=0
 IO_ERROR=0

 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0

File Input Format Counters

 Bytes Read=361

File Output Format Counters

 Bytes Written=72

Step 7 − Use the following command to verify the resultant files in the output folder.

$HADOOP_HOME/bin/hadoop fs -ls output_dir/

You will find the output in three files because you are using three partitioners and three Reducers
in your program.

Step 8 − Use the following command to see the output in Part-00000 file. This file is generated
by HDFS.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000

Output in Part-00000

Female 15000
Male 40000

Use the following command to see the output in Part-00001 file.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00001

Output in Part-00001

Female 35000
Male 31000

Use the following command to see the output in Part-00002 file.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00002

Output in Part-00002

Female 51000
Male 50000

Processing math: 100%

