PARROT - PROGRAMMING EXAMPLES

Parrot programing is similar to assembly language programing and you get a chance to work at
lower level. Here is the list of programming examples to make you aware of the various aspects of
Parrot Programming.

e Classic Hello world!

e Using reqgisters

e Summing squares

e Fibonacci Numbers

e Computing factorial

e Compiling to PBC

e PIR vs. PASM

Classic Hello world!

Create a file called hello.pir that contains the following code:

.sub _main
print "Hello world!\n"
end

.end

Then run it by typing:
parrot hello.pir

As expected, this will display the text 'Hello world!' on the console, followed by a new line duetothe\n.

In this above example, '.sub _main' states that the instructions that follow make up a subroutine
named ' main', until a '.end' is encountered. The second line contains the print instruction. In this
case, we are calling the variant of the instruction that accepts a constant string. The assembler
takes care of deciding which variant of the instruction to use for us. The third line contains the
'end' instruction, which causes the interpreter to terminate.

Using Registers

We can modify hello.pir to first store the string Hello world!\n in a register and then use that
register with the printinstruction.

.sub _main
set S1, "Hello world!\n"
print S1
end

.end

Here we have stated exactly which register to use. However, by replacing S1 with $S1 we can
delegate the choice of which register to use to Parrot. It is also possible to use an = notation
instead of writing the set instruction.

.sub _main
$SO0 = "Hello world!\n"
print $S0
end

.end

http://www.tutorialspoint.com/parrot/parrot_examples.htm
/parrot/parrot_examples.htm#parrot_hello_world
/parrot/parrot_examples.htm#parrot_registers
/parrot/parrot_examples.htm#parrot_squares
/parrot/parrot_examples.htm#parrot_fibonacci
/parrot/parrot_examples.htm#parrot_factorial
/parrot/parrot_examples.htm#parrot_pbc
/parrot/parrot_examples.htm#parrot_pir

To make PIR even more readable, named registers can be used. These are later mapped to real
numbered registers.

.sub _main
.local string hello
hello = "Hello world!\n"
print hello
end

.end

The '.local' directive indicates that the named register is only needed inside the current
compilation unit thatis, between. suband. end. Following '.local' is a type. This can be int forIregisters, float
forNregisters, string forSregisters, pmc forPregisters or the name of a PMC type.

Summing squares

This example introduces some more instructions and PIR syntax. Lines starting with a # are
comments.

.sub _main
State the number of squares to sum.
.local int maxnum
maxnum = 10

Some named registers we'll use.

Note how we can declare many

registers of the same type on one line.
.local int i, total, temp

total = 0

Loop to do the sum.
i=1

loop:
temp = i * 1
total += temp
inc i
if i <= maxnum goto loop

Output result.
print "The sum of the first "
print maxnum
print " squares is
print total
print ".\n"
end
.end

PIR provides a bit of syntactic sugar that makes it look more high level than assembly. For
example:

temp = i * i

Is just another way of writing the more assembly-ish:
mul temp, i, i

And:

if i <= maxnum goto loop

Is the same as:

le i, maxnum, loop

And:

total += temp

Is the same as:

add total, temp

As a rule, whenever a Parrot instruction modifies the contents of a register, that will be the first
register when writing the instruction in assembly form.

As is usual in assembly languages, loops and selections are implemented in terms of conditional
branch statements and labels, as shown above. Assembly programming is one place where using
goto is not a bad form!

Fibonacci Numbers
The Fibonacci series is defined like this: take two numbers, 1 and 1. Then repeatedly add together
the last two numbers in the series to make the nextone: 1,1, 2, 3,5, 8, 13, and so on. The

Fibonacci number fibn is the n'th number in the series. Here's a simple Parrot assembler program
that finds the first 20 Fibonacci numbers:

Some simple code to print some Fibonacci numbers

print "The first 20 fibonacci numbers are:\n"
set I1, 0
set I2, 20
set 13, 1
set 14, 1
REDO: eq I1, I2, DONE, NEXT
NEXT: set I5, T4
add I4, I3, I4
set I3, I5
print I3
print "\n"
inc I1
branch REDO
DONE : end

This is the equivalent code in Perl:

print "The first 20 fibonacci numbers are:\n";

my $i = 0;
my $target = 20;
my $a = 1;
my $b = 1;

until ($i == $target) {
my $num = $b;
$b += $a;
$a = $num;
print $a, "\n";
$i++;

}

NOTE: As a fine point of interest, one of the shortest and certainly the most beautiful ways of
printing out a Fibonacci series in Perl is perl -le 'b = 1; printa+=bwhileprintb+=%a".

Recursively computing factorial

In this example we define a factorial function and recursively call it to compute factorial.

.sub _fact
Get input parameter.
.param int n

return (n > 1 ? n * _fact(n - 1) : 1)
.local int result

if n > 1 goto recurse
result = 1
goto return

recurse:
$10 = n - 1
result = _fact($I0)
result *= n

return:
.return (result)
.end

.sub _main :main
.local int f, i

We'll do factorial 0 to 10.
i=0
loop:
f = _fact(i)
print "Factorial of "
print i
print " is "
print f
print ".\n"
inc i

if i <= 10 goto loop

That's it.
end
.end

Let's look at the fact sub first. A point that was glossed over earlier is why the names of
subroutines, all start with an underscore! This is done simply as a way of showing that the label is
global rather than scoped to a particular subroutine. This is significant as the label is then visible to
other subroutines.

The first line, .param int n, specifies that this subroutine takes one integer parameter and that we'd
like to refer to the register it was passed in by the name n for the rest of the sub.

Much of what follows has been seen in previous examples, apart from the line reading:

result = _fact($I0)

This single line of PIR actually represents quite a few lines of PASM. First, the value in register $10 is
moved into the appropriate register for it to be received as an integer parameter by the fact
function. Other calling related registers are then set up, followed by fact being invoked. Then,
once factreturns, the value returned by factis placed into the register given the name result.

Right before the .end of the fact sub, a .return directive is used to ensure the value held in the
register; named result is placed into the correct register for it to be seen as a return value by the
code calling the sub.

The call to _factin main works in just the same way as the recursive call to _fact within the sub
_fact itself. The only remaining bit of new syntax is the :main, written after .sub _main. By default,
PIR assumes that execution begins with the first sub in the file. This behavior can be changed by

marking the sub to start in with :main.
Compiling to PBC
To compile PIR to bytecode, use the -0 flag and specify an output file with the extension .pbc.

parrot -o factorial.pbc factorial.pir

PIR vs. PASM

PIR can be turned into PASM by running:

parrot -o hello.pasm hello.pir

The PASM for the final example looks like this:

_main:
set S30, "Hello world!\n"
print S30

end

PASM does not handle register allocation or provide support for named registers. It also does not
have the .sub and .end directives, instead replacing them with a label at the start of the

inctriicrtinnce

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

