PARROT - QUICK GUIDE

WHAT IS PARROT

When we feed our program into conventional Perl, it is first compiled into an internal
representation, or bytecode; this bytecode is then fed into almost separate subsystem inside Perl
to be interpreted. So there are two distinct phases of Perl's operation:

e Compilation to bytecode and

¢ Interpretation of bytecode.

This is not unique to Perl. Other languages following this design include Python, Ruby, Tcl and even
Java.

We also know that there is a Java Virtual Machine JVM which is a platform independent execution
environment that converts Java bytecode into machine language and executes it. If you
understand this concept then you will understand Parrot.

Parrot is a virtual machine designed to efficiently compile and execute bytecode for interpreted
languages. Parrot is the target for the final Perl 6 compiler, and is used as a backend for Pugs, as
well as variety of other languages like Tcl, Ruby, Python etc.

Parrot has been written using most popular language "C".

PARROT INSTALLATION

Before we start, let's download one latest copy of Parrot and install it on our machine.

Parrot download link is available in_Parrot CVS Snapshot. Download the latest version of Parrot and
to install it follow the following steps:

¢ Unzip and untar the downloaded file.
e Make sure you already have Perl 5 installed on your machine.

¢ Now do the following:

% cd parrot

% perl Configure.pl

Parrot Configure

Copyright (C) 2001 Yet Another Society

Since you're running this script, you obviously have

Perl 5 -- I'll be pulling some defaults from its configuration.

e You'll then be asked a series of questions about your local configuration; you can almost
always hit return/enter for each one.

e Finally, you'll be told to type - make test prog, and Parrot will successfully build the test
interpreter.

¢ Now you should run some tests; so type 'make test' and you should see a readout like the
following:

perl t/harness

t/op/basic..... ok,1/2 skipped:label constants unimplemented in
assembler

t/op/string....ok, 1/4 skipped: 1I'm unable to write it!

All tests successful, 2 subtests skipped.

Files=2, Tests=6,......

http://www.tutorialspoint.com/parrot/parrot_quick_guide.htm
http://www.parrot.org/source.html

By the time you read this, there could be more tests, and some of those which skipped might not
skip, but make sure that none of them should fail!

Once you have a parrot executable installed, you can check out the various types of examples
given in Parrot 'Examples' section. Also you can check out the examples directory in the parrot
repository.

PARROT INSTRUCTIONS FORMAT

Parrot can currently acceptinstructions to execute in four forms. PIR ParrotIntermediateRepresentation is
designed to be written by people and generated by compilers. It hides away some low-level details,
such as the way parameters are passed to functions.

PASM ParrotAssembly is a level below PIR - it is still human readable/writable and can be generated by
a compiler, but the author has to take care of details such as calling conventions and register
allocation. PAST ParrotAbstractSyntaxTree enables Parrot to accept an abstract syntax tree style input -
useful for those writing compilers.

All of the above forms of input are automatically converted inside Parrot to PBC ParrotBytecode. This
is much like machine code, but understood by the Parrot interpreter.

Itis notintended to be human-readable or human-writable, but unlike the other forms execution
can start immediately without the need for an assembly phase. Parrot bytecode is platform
independent.

The instruction set

The Parrot instruction set includes arithmetic and logical operators, compare and branch/jump
forimplementingloops, if. . . thenconstructs, etc. , finding and storing global and lexical variables, working
with classes and objects, calling subroutines and methods along with their parameters, I/0O, threads
and more.

GARBAGE COLLECTION IN PARROT

Like Java Virtual Machine, Parrot also keep you free from worrying about memory de-allocation.
e Parrot provides garbage collection.
e Parrot programs do not need to free memory explicitly.
¢ Allocated memory will be freed when itis no longer in use i.e. no longer referenced.

e Parrot Garbage Collector runs periodically to take care of unwanted memory.

PARROT DATATYPES

The Parrot CPU has four basic data types:
o IV
An integer type; guaranteed to be wide enough to hold a pointer.
e NV
An architecture-independent floating-point type.
e STRING
An abstracted, encoding-independent string type.
e PMC
A scalar.

The first three types are pretty much self-explanatory; the final type - Parrot Magic Cookies, are

/parrot/parrot_examples.htm

slightly more difficult to understand.
What are PMCs?

PMC stands for Parrot Magic Cookie. PMCs represent any complex data structure or type, including
aggregate data types arrays, hashtables, etc. . A PMC can implement its own behavior for arithmetic,
logical and string operations performed on it, allowing for language-specific behavior to be
introduced. PMCs can be built in to the Parrot executable or dynamically loaded when they are
needed.

PARROT REGISTERS

The current Perl 5 virtual machine is a stack machine. [t communicate values between operations
by keeping them on a stack. Operations load values onto the stack, do whatever they need to do
and put the result back onto the stack. This is easy to work with, but it is slow.

To add two numbers together, you need to perform three stack pushes and two stack pops. Worse,
the stack has to grow at runtime, and that means allocating memory just when you don't want to
be allocating it.

So Parrot is going to break the established tradition for virtual machines, and use a register
architecture, more akin to the architecture of a real hardware CPU. This has another advantage.
We can use all the existing literature on how to write compilers and optimizers for register-based
CPUs for our software CPU!

Parrot has specialist registers for each type: 32 IV registers, 32 NV registers, 32 string registers and
32 PMC registers. In Parrot assembler, these are named I1...132, N1...N32, 51...532, P1...P32
respectively.

Now let's look at some assembler. We can set these registers with the set operator:
set I1, 10

set N1, 3.1415
set S1, "Hello, Parrot"

All Parrot ops have the same format: the name of the operator, the destination register and then
the operands.

PARROT OPERATIONS

There are a variety of operations you can perform. For instance, we can print out the contents of a
register or a constant:

set I1, 10

print "The contents of register I1 is: "
print I1

print "\n"

The above instructions will result in The contents of register 11 is: 10

We can perform mathematical operations on registers:

Add the contents of I2 to the contents of Il
add 11, I1, I2

Multiply I2 by I4 and store in I3

mul I3, I2, I4

Increment I1 by one

inc I1
Decrement N3 by 1.5
dec N3, 1.5

We can even perform some simple string manipulation:

set S1, "fish"

set S2, '"bone"

concat S1, S2 # S1 is now "fishbone"
set S3, '"w"

substr S4, S1, 1, 7

concat S3, S4 # S3 is now "wishbone"
length I1, S3 # I1 is now 8

PARROT BRANCHES

Code gets a little boring without flow control; for starters, Parrot knows about branching and labels.
The branch op is equivalent to Perl's goto:

branch TERRY
JOHN: print "fjords\n"
branch END
MICHAEL: print " pining"
branch GRAHAM
TERRY: print "It's"
branch MICHAEL
GRAHAM: print " for the "
branch JOHN
END: end

It can also perform simple tests to see whether a register contains a true value:

set I1, 12

set 12, 5

mod I3, I2, I2

if I3, REMAIND, DIVISOR
REMAIND: print "5 divides 12 with remainder "

print I3

branch DONE
DIVISOR: print "5 is an integer divisor of 12"
DONE: print "\n"

end

Here's what that would look like in Perl, for comparison:

$il
$i2 = 5;
$i3 $i1 % $i2;
if ($i3) {
print "5 divides 12 with remainder ";
print $i3;
} else {
print "5 is an integer divisor of 12";
}
print "\n";
exit;

12;

Parrot Operator

We have the full range of numeric comparators: eq, ne, It, gt, le and ge. Note that you can't use
these operators on arguments of disparate types; you may even need to add the suffix _ior _nto
the op, to tell it what type of argument you are using, although the assembler ought to divine this
for you, by the time you read this.

PARROT PROGRAMMING EXAMPLES

Parrot programing is similar to assembly language programing and you get a chance to work at
lower level. Here is the list of programming examples to make you aware of the various aspects of
Parrot Programming.

e Classic Hello world!

/parrot/parrot_examples.htm#parrot_hello_world

e Using reqisters

e Summing squares

e Fibonacci Numbers

e Computing factorial

e Compiling to PBC
e PIR vs. PASM

Classic Hello world!

Create a file called hello.pir that contains the following code:

.sub _main
print "Hello world!\n"
end

.end

Then run it by typing:
parrot hello.pir

As expected, this will display the text 'Hello world!' on the console, followed by a new line duetothe\n.

In this above example, '.sub _main' states that the instructions that follow make up a subroutine
named ' main', until a '.end' is encountered. The second line contains the print instruction. In this
case, we are calling the variant of the instruction that accepts a constant string. The assembler
takes care of deciding which variant of the instruction to use for us. The third line contains the
'end' instruction, which causes the interpreter to terminate.

Using Registers

We can modify hello.pir to first store the string Hello world!\n in a register and then use that
register with the printinstruction.

.sub _main
set S1, "Hello world!\n"
print S1
end

.end

Here we have stated exactly which register to use. However, by replacing S1 with $S1 we can
delegate the choice of which register to use to Parrot. It is also possible to use an = notation
instead of writing the set instruction.

.sub _main
$SO0 = "Hello world!\n"
print $S0
end

.end

To make PIR even more readable, named registers can be used. These are later mapped to real
numbered registers.

.sub _main
.local string hello
hello = "Hello world!\n"
print hello
end

.end

The '.local' directive indicates that the named register is only needed inside the current
compilation unit thatis, between. suband. end. Following '.local' is a type. This can be int forIregisters, float

/parrot/parrot_examples.htm#parrot_registers
/parrot/parrot_examples.htm#parrot_squares
/parrot/parrot_examples.htm#parrot_fibonacci
/parrot/parrot_examples.htm#parrot_factorial
/parrot/parrot_examples.htm#parrot_pbc
/parrot/parrot_examples.htm#parrot_pir

forNregisters, string forSregisters, pmc forPregisters or the name of a PMC type.

Summing squares

This example introduces some more instructions and PIR syntax. Lines starting with a # are
comments.

.sub _main
State the number of squares to sum.
.local int maxnum
maxnum = 10

Some named registers we'll use.

Note how we can declare many

registers of the same type on one line.
.local int i, total, temp

total = 0

Loop to do the sum.
i=1
loop:
temp = 1 * 1
total += temp
inc i
if i <= maxnum goto loop

Output result.
print "The sum of the first "
print maxnum
print " squares is
print total
print ".\n"
end
.end

PIR provides a bit of syntactic sugar that makes it look more high level than assembly. For
example:

temp = i * 1
Is just another way of writing the more assembly-ish:
mul temp, i, i
And:
if i <= maxnum goto loop
Is the same as:
le i, maxnum, loop
And:
total += temp
Is the same as:
add total, temp

As a rule, whenever a Parrot instruction modifies the contents of a register, that will be the first
register when writing the instruction in assembly form.

As is usual in assembly languages, loops and selections are implemented in terms of conditional

branch statements and labels, as shown above. Assembly programming is one place where using
goto is not a bad form!

Fibonacci Numbers

The Fibonacci series is defined like this: take two numbers, 1 and 1. Then repeatedly add together
the last two numbers in the series to make the nextone: 1,1, 2, 3,5, 8,13, and so on. The
Fibonacci number fibn is the n'th number in the series. Here's a simple Parrot assembler program
that finds the first 20 Fibonacci numbers:

Some simple code to print some Fibonacci numbers

print "The first 20 fibonacci numbers are:\n"
set I1, 0
set I2, 20
set I3, 1
set 4, 1
REDO: eq I1, I2, DONE, NEXT
NEXT: set I5, I4
add 14, 13, 14
set I3, I5
print I3
print "\n"
inc I1
branch REDO
DONE: end

This is the equivalent code in Perl:

print "The first 20 fibonacci numbers are:\n";

my $i = 0;
my $target = 20;
my $a = 1;
my $b = 1;

until ($i == $target) {
my $num = $b;
$b += $a;
$a = $num;
print $a, "\n";
$it++;

NOTE: As a fine point of interest, one of the shortest and certainly the most beautiful ways of
printing out a Fibonacci series in Perl is perl -le 'b = 1; printa+=bwhileprintb+=%a".

Recursively computing factorial

In this example we define a factorial function and recursively call it to compute factorial.

.sub _fact
Get input parameter.
.param int n

return (n > 1 ?2 n * _fact(n - 1) : 1)
.local int result

if n > 1 goto recurse
result = 1
goto return

recurse:
$10 = n - 1
result = _fact($I0)
result *= n

return:
.return (result)

.end

.sub _main :main
.local int f, i

We'll do factorial 0 to 10.

i=20
loop:
f = _fact(i)
print "Factorial of "
print i
print " is "
print f
print ".\n"
inc i

if 1 <= 10 goto loop
That's it.

end
.end

Let's look atthe fact sub first. A point that was glossed over earlier is why the names of
subroutines, all start with an underscore! This is done simply as a way of showing that the label is
global rather than scoped to a particular subroutine. This is significant as the label is then visible to
other subroutines.

The first line, .param int n, specifies that this subroutine takes one integer parameter and that we'd
like to refer to the register it was passed in by the name n for the rest of the sub.

Much of what follows has been seen in previous examples, apart from the line reading:

result = _fact($10)

This single line of PIR actually represents quite a few lines of PASM. First, the value in register $10 is
moved into the appropriate register for it to be received as an integer parameter by the fact
function. Other calling related registers are then set up, followed by fact being invoked. Then,
once factreturns, the value returned by factis placed into the register given the name result.
Right before the .end of the _fact sub, a .return directive is used to ensure the value held in the
register; named result is placed into the correct register for it to be seen as a return value by the
code calling the sub.

The call to _factin main works in just the same way as the recursive call to _fact within the sub
_factitself. The only remaining bit of new syntax is the :main, written after .sub _main. By default,

PIR assumes that execution begins with the first sub in the file. This behavior can be changed by
marking the sub to startin with :main.

Compiling to PBC

To compile PIR to bytecode, use the -o flag and specify an output file with the extension .pbc.
parrot -o factorial.pbc factorial.pir

PIR vs. PASM

PIR can be turned into PASM by running:

parrot -o hello.pasm hello.pir

The PASM for the final example looks like this:

_main:

set S30, "Hello world!\n"
print S30
end

PASM does not handle register allocation or provide support for named registers. It also does not
have the .sub and .end directives, instead replacing them with a label at the start of the

inctriictinnc

Processing math: 100%

