APTITUDE - NUMBER SYSTEM

Advertisements

Numbers

In Decimal number system, there are ten symbols namely $0,1,2,3,4,5,6,7,8$ and 9 called digits. A number is denoted by group of these digits called as numerals.

Face Value

Face value of a digit in a numeral is value of the digit itself. For example in 321, face value of 1 is 1 , face value of 2 is 2 and face value of 3 is 3 .

Place Value

Place value of a digit in a numeral is value of the digit multiplied by 10^{n} where n starts from 0 . For example in 321:

- Place value of $1=1 \times 10^{0}=1 \times 1=1$
- Place value of $2=2 \times 10^{1}=2 \times 10=20$
- Place value of $3=3 \times 10^{2}=3 \times 100=300$
| $0^{\text {th }}$ position digit is called unit digit and is the most commonly used topic in aptitude tests.

Types of Numbers

1. Natural Numbers $-\mathrm{n}>0$ where n is counting number; [1,2,3...]
2. Whole Numbers $-\mathrm{n} \geq 0$ where n is counting number; [$0,1,2,3 \ldots]$.

0 is the only whole number which is not a natural number.
Every natural number is a whole number.
3. Integers $-\mathrm{n} \geq 0$ or $\mathrm{n} \leq 0$ where n is counting number; $\ldots,-3,-2,-1,0,1,2,3 \ldots$ are integers.

- Positive Integers - n > 0; [1,2,3...]
- Negative Integers $-\mathrm{n}<0 ;[-1,-2,-3 \ldots]$
- Non-Positive Integers - $\mathrm{n} \leq 0 ;[0,-1,-2,-3 \ldots]$
- Non-Negative Integers - $\mathrm{n} \geq 0 ;[0,1,2,3 \ldots]$
| 0 is neither positive nor negative integer.

4. Even Numbers - $\mathrm{n} / 2=0$ where n is counting number; $[0,2,4, \ldots]$
5. Odd Numbers - $\mathrm{n} / 2 \neq 0$ where n is counting number; $[1,3,5, \ldots]$

1 is not a prime number.
To test a number p to be prime, find a whole number k such that $k>\sqrt{ }$. Get all prime numbers less than or equal to k and divide p with each of these prime numbers. If no number divides p exactly then p is a prime number otherwise it is not a prime number.

```
Example: }191\mathrm{ is prime number or not?
Solution:
Step 1 - 14 > \sqrt{}{191}
Step 2 - Prime numbers less than 14 are 2,3,5,7,11 and 13.
Step 3 - }191\mathrm{ is not divisible by any above prime number.
Result - }191\mathrm{ is a prime number.
Example: }187\mathrm{ is prime number or not?
Solution:
Step 1 - 14 > \sqrt{}{187}
Step 2 - Prime numbers less than 14 are 2,3,5,7,11 and 13.
Step 3 - 187 is divisible by 11.
Result - 187 is not a prime number.
```

7. Composite Numbers - Non-prime numbers >1. For example, 4,6,8, 9 etc.

1 is neither a prime number nor a composite number.
2 is the only even prime number.
8. Co-Primes Numbers - Two natural numbers are co-primes if their H.C.F. is 1. For example, $(2,3),(4,5)$ are coprimes.

Divisibility

Following are tips to check divisibility of numbers.

1. Divisibility by 2 - A number is divisible by 2 if its unit digit is $0,2,4,6$ or 8 .
```
Example: 64578 is divisible by 2 or not?
Solution:
Step 1 - Unit digit is 8.
Result - 64578 is divisible by 2.
Example: 64575 is divisible by 2 or not?
Solution:
Step 1 - Unit digit is 5.
Result - 64575 is not divisible by 2.
```

2. Divisibility by 3 - A number is divisible by 3 if sum of its digits is completely divisible by 3 .
```
Example: 64578 is divisible by 3 or not?
Solution:
Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 8 = 30
which is divisible by }3
Result - 64578 is divisible by 3.
Example: 64576 is divisible by 3 or not?
Solution:
Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 6 = 28
```

```
which is not divisible by 3.
Result - 64576 is not divisible by 3.
```

3. Divisibility by 4 - A number is divisible by 4 if number formed using its last two digits is completely divisible by 4 .
```
Example: 64578 is divisible by 4 or not?
Solution:
Step 1 - number formed using its last two digits is 78
which is not divisible by 4.
Result - 64578 is not divisible by 4.
Example: 64580 is divisible by 4 or not?
Solution:
Step 1 - number formed using its last two digits is 80
which is divisible by 4.
Result - 64580 is divisible by 4.
```

4. Divisibility by 5 - A number is divisible by 5 if its unit digit is 0 or 5 .
```
Example: 64578 is divisible by 5 or not?
Solution:
Step 1 - Unit digit is 8.
Result - 64578 is not divisible by 5.
Example: 64575 is divisible by 5 or not?
Solution:
Step 1 - Unit digit is 5.
Result - 64575 is divisible by 5.
```

5. Divisibility by 6 - A number is divisible by 6 if the number is divisible by both 2 and 3 .
```
Example: 64578 is divisible by 6 or not?
Solution:
Step 1 - Unit digit is 8. Number is divisible by 2.
Step 2 - Sum of its digits is 6 + 4 + 5 + 7 + 8 = 30
which is divisible by 3.
Result - 64578 is divisible by 6.
Example: 64576 is divisible by 6 or not?
Solution:
Step 1 - Unit digit is 8. Number is divisible by 2.
Step 2 - Sum of its digits is 6 + 4 + 5 + 7 + 6 = 28
which is not divisible by 3.
Result - 64576 is not divisible by 6.
```

6. Divisibility by $\mathbf{8}$ - A number is divisible by 8 if number formed using its last three digits is completely divisible by 8 .
```
Example: 64578 is divisible by 8 or not?
Solution:
Step 1 - number formed using its last three digits is 578
which is not divisible by }8
Result - 64578 is not divisible by 8.
Example: 64576 is divisible by 8 or not?
Solution:
Step 1 - number formed using its last three digits is 576
which is divisible by 8.
Result - 64576 is divisible by 8.
```

7. Divisibility by 9 - A number is divisible by 9 if sum of its digits is completely divisible by 9 .
```
Example: 64579 is divisible by 9 or not?
Solution:
Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 9 = 31
which is not divisible by 9.
Result - 64579 is not divisible by 9.
Example: 64575 is divisible by 9 or not?
Solution:
Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 5 = 27
which is divisible by }9
Result - 64575 is divisible by 9.
```

8. Divisibility by $\mathbf{1 0}$ - A number is divisible by 10 if its unit digit is 0 .
```
Example: 64575 is divisible by 10 or not?
Solution:
Step 1 - Unit digit is 5.
Result - 64578 is not divisible by 10.
Example: 64570 is divisible by 10 or not?
Solution:
Step 1 - Unit digit is 0.
Result - 64570 is divisible by 10.
```

9. Divisibility by 11 - A number is divisible by 11 if difference between sum of digits at odd places and sum of digits at even places is either 0 or is divisible by 11 .
```
Example: 64575 is divisible by 11 or not?
Solution:
Step 1 - difference between sum of digits at odd places
and sum of digits at even places = (6+5+5) - (4+7) = 5
which is not divisible by 11.
Result - 64575 is not divisible by 11.
Example: 64075 is divisible by 11 or not?
Solution:
Step 1 - difference between sum of digits at odd places
and sum of digits at even places = (6+0+5) - (4+7) = 0.
Result - 64075 is divisible by 11.
```


Tips on Division

1. If a number n is divisible by two co-primes numbers a, b then n is divisible by ab .
2. (a-b) always divides $\left(a^{n}-b^{n}\right)$ if n is a natural number.
3. $(a+b)$ always divides $\left(a^{n}-b^{n}\right)$ if n is an even number.
4. $(\mathrm{a}+\mathrm{b})$ always divides $\left(\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}\right)$ if n is an odd number.

Division Algorithm

When a number is divided by another number then

Dividend $=($ Divisor x Quotient $)+$ Reminder

Series

Following are formulaes for basic number series:

1. $(1+2+3+\ldots+n)=(1 / 2) n(n+1)$
2. $\left(1^{2}+2^{2}+3^{2}+\ldots+n^{2}\right)=(1 / 6) n(n+1)(2 n+1)$
3. $\left(1^{3}+2^{3}+3^{3}+\ldots+\mathrm{n}^{3}\right)=(1 / 4) \mathrm{n}^{2}(\mathrm{n}+1)^{2}$

Basic Formulaes

These are the basic formulae:

```
(a+b)2}=\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}+2a
(a-b)2 = a'2}+\mp@subsup{b}{}{2}-2a
(a+b)}\mp@subsup{)}{}{2}-(a-b\mp@subsup{)}{}{2}=4a
(a+b)2}+(a-b\mp@subsup{)}{}{2}=2(\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}
(a}\mp@subsup{}{}{2}-\mp@subsup{b}{}{2})=(a+b)(a-b
(a+b+c)2}=\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}+\mp@subsup{c}{}{2}+2(ab+bc+ca
(a3+bb})=(a+b)(\mp@subsup{a}{}{2}-ab+\mp@subsup{b}{}{2}
(a}\mp@subsup{}{}{3}-\mp@subsup{b}{}{3})=(a-b)(\mp@subsup{a}{}{2}+ab+\mp@subsup{b}{}{2}
(a}\mp@subsup{}{}{3}+\mp@subsup{b}{}{3}+\mp@subsup{c}{}{3}-3abc)=(a+b+c)(\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}+\mp@subsup{c}{}{2}-ab-bc-ca
```

