NUMBER SYSTEM - PERCENTAGES

Advertisements

Percentage

Percent means many hundredths.Example: $\mathrm{z} \%$ is z percent which means z hundredths. It will be written as:
$\mathrm{z} \%=\mathrm{z} / 100$
p / q as percent: $(\mathrm{p} / \mathrm{q} \times 100) \%$

Commodity

If the price of a commodity increases by $\mathrm{R} \%$, then the reduction in consumption so as not to increase the expenditure is:
$\left[\mathrm{R} /(100+\mathrm{R})^{\mathrm{x}} 100\right] \%$
If the price of a commodity decreases by $\mathrm{R} \%$, then the increase in consumption so as not to decrease the expenditure is:
$\left[\mathrm{R} /(100-\mathrm{R})^{\mathrm{x}} 100\right] \%$

Population

The population of a city is P and let it increases at the rate of $\mathrm{R} \%$ per annum:
Population after t years: $P(1+R / 100)^{t}$
Population t years ago: $P /(1+R / 100)^{t}$

Depreciation

Let V be the present value of machine. Suppose it depreciates at the rate of $\mathrm{R} \%$ per annum:
Machine's value after t years: $P(1-R / 100)^{t}$
Machine's value t years ago: $\mathrm{P} /(1-\mathrm{R} / 100)^{\mathrm{t}}$

- If \mathbf{P} is $\mathbf{R \%}$ more than \mathbf{Q}, then \mathbf{Q} is less than \mathbf{P} by how many percent?

$$
\left[\mathrm{R} /(100+\mathrm{R})^{\mathrm{x}} 100\right] \%
$$

- If \mathbf{P} is $\mathbf{R \%}$ more than \mathbf{Q}, then \mathbf{Q} is more than \mathbf{P} by how many percent?
$\left[{ }^{\mathrm{R}} /(100-\mathrm{R})^{\mathrm{x}} 100\right] \%$

Solved Examples

Solved Examples
aptitude_percentages.htm

