NUMBER SYSTEM - PERCENTAGES

http://www.tutorialspoint.com/quantitative_aptitude/aptitude_percentages.htm

Copyright © tutorialspoint.com

Advertisements

Percentage

Percent means many hundredths. Example: z% is z percent which means z hundredths. It will be written as:

 $z\% = \frac{z}{100}$

 p_q as percent: $(p_q \times 100)\%$

Commodity

If the price of a commodity increases by R%, then the reduction in consumption so as not to increase the expenditure is:

 $[\frac{R}{(100 + R)} \times 100]\%$

If the price of a commodity decreases by R%, then the increase in consumption so as not to decrease the expenditure is:

[^R/_(100 - R)x 100]%

Population

The population of a city is P and let it increases at the rate of R% per annum:

Population after t years: $P(1 + \frac{R}{100})^t$

Population t years ago: $P_{(1 + R_{100})^t}$

Depreciation

Let V be the present value of machine. Suppose it depreciates at the rate of R% per annum:

Machine's value after t years: $P(1 - \frac{R}{100})^t$

Machine's value t years ago: $P_{(1 - R_{100})^t}$

• If P is R% more than Q, then Q is less than P by how many percent?

 $[\frac{R}{(100 + R)} \times 100]\%$

• If P is R% more than Q, then Q is more than P by how many percent?

 $[\frac{R}{(100 - R)} \times 100]\%$

Solved Examples

<u>Solved Examples</u> aptitude_percentages.htm