SPEED \& DISTANCE - SOLVED EXAMPLES

http://www.tutorialspoint.com/quantitative_aptitude/aptitude_speed_distance_examples.htm

Advertisements

Q 1 - What is meters/sec for $54 \mathrm{~km} / \mathrm{hr}$?
A $-15 \mathrm{~m} / \mathrm{sec}$

B-20 m/sec

C $-25 \mathrm{~m} / \mathrm{sec}$
D $-30 \mathrm{~m} / \mathrm{sec}$

Answer - A

Explanation

```
54 km/hr = (54*5/18) m/sec = 15 m/sec.
```

Q 2 - What is $\mathrm{km} / \mathrm{hr}$ for $16 \mathrm{~m} / \mathrm{sec}$?
A $-53.6 \mathrm{~km} / \mathrm{hr}$
B $-55.6 \mathrm{~km} / \mathrm{hr}$

C $-57.6 \mathrm{~km} / \mathrm{hr}$

D - 59.6km/hr

Answer - C

Explanation

```
16 m/sec = (16*18/5) km/hr = 288/5km/hr = 57.6 km/hr.
```

Q 3 - Anita can cover a sure separation in 1 hr 24 min by covering two-third of the separation at $4 \mathrm{~km} / \mathrm{hr}$ and the rest at $5 \mathrm{~km} / \mathrm{hr}$. Find the aggregate separation.

A-3 kms
B-4 kms
C-5 kms

D-6 kms

Answer - D

Explanation

```
Let the aggregate separation be x km.
Then, 2/3x/4+1/3x/5=7/5
=> x/6+x/15=7/5
=> 5x+2x=42
=> 7x=42
=> x=6.
\therefore Total separation = 6 km
```

Q 4-A man strolls from his home to the railroad station. On the off chance that he strolls at $5 \mathbf{k m} / \mathrm{hr}$, he misses a train by 7 minutes. However, on the off chance that he strolls at $6 \mathbf{k m} / \mathrm{hr}$, he achieves the station 5 minute before the flight of the train. Discover the separation secured by him to achieve the station.

A - 5 kms
B-6 kms
C-7kms

D-8kms

Answer - B

Explanation

```
Let the required separation be x km. At that point,
X/5 - x/6 = 12/60 (distinction between two time interims is 12 min.)
=> x/5 - x/6 = 1/5
=> 6x-5x=6
=> x=6
Required separation = 6 kms
```

Q 5 - Strolling at 7/8 of its typical velocity, a train is 10 minutes past the point of no return. Locate its standard time to cover the trip?

A-60 min
B-70 min
C-80 min
D - 90 min
Answer - B

Explanation

```
New speed = 7/8 of its standard velocity
New time taken = 8/7 of the standard time.
(8/7 of the standard time)- (common time) = 10 min.
=> 1/7 of the standard time = 10 min
=> usual time = 70 min.
```

Q 6 - Hitesh covers a sure separation via auto driving at $70 \mathrm{~km} / \mathrm{hr}$ and returns back to the beginning stage riding on a bike at $\mathbf{5 5} \mathbf{k m} / \mathrm{hr}$. locate his normal velocity for the entire trip?

A $-62.6 \mathrm{~km} / \mathrm{hr}$
B-61.6 km/hr
C $-60.6 \mathrm{~km} / \mathrm{hr}$
D $-59.6 \mathrm{~km} / \mathrm{hr}$
Answer - B

Explanation

```
Normal velocity = 2xy/(x+y) km/hr = (2*70*55)/ (70+55) km/hr
=(2*70*55)/125 km/hr = 308/5 km/hr = 61.6 km/hr
```

Q 7 - The separation between two stations A and B is 450 km . A train begins at 4 pm from A and moves towards B at a normal velocity of $60 \mathrm{~km} / \mathrm{hr}$. Another train begins from B at $3.20 \mathrm{p} . \mathrm{m}$ and moves towards A at a normal velocity of $80 \mathrm{~km} / \mathrm{hr}$. How a long way from A will the two train s meet and what time?

A-6:50 pm
B-5:50 pm
C-4:50 pm
D - 3:50 pm
Answer - A

Explanation

```
Assume two trains meet at x km from A
(time taken by B to cover (450-x) km-(time taken by A to cover x km) = 40/60
=> (450-x)/80-x/60=40/60 ?3 (450-x)-4x=160
=> 7x=1190 \therefore x = 170
In this way the two trains meet at a separation of 170 km from A.
Time taken by A to cover 170 km = 170/60 = 2hrs 50 min.
Along these lines, the two trains meet at 6:50 pm
```

Q 8 - A man cycles from A to B, a separation of 21 km in 1 hr 40 min . The street from A is level for 13 km and afterward it is tough to B. The man's normal rate on level is $15 \mathbf{k m} / \mathrm{hr}$. Locate his normal tough pace?

A - $10 \mathrm{~km} / \mathrm{hr}$
B $-11 \mathrm{~km} / \mathrm{hr}$
C-12 km/hr
D - $13 \mathrm{~km} / \mathrm{hr}$

Answer - A

Explanation

```
Let the normal tough rate be x km/hr. at that point,
13/15 + 8/x = 5/3
=>8/x=(5/3-13/15)=12/15=4/5
=>x = (8*5)/4=10
\therefore Normal tough rate = 10 km/hr
```

Q 9-A hoodlum is spotted by a policeman from a separation of 100 meters. At the point when the policeman begins the pursuit, the criminal likewise begin s running. In the event that the pace of the criminal be $8 \mathrm{~km} / \mathrm{hr}$ and that of the policeman $10 \mathrm{~km} / \mathrm{hr}$, how far the hoodlum will have keep running before he is overwhelmed?

A - 200 m

B - 300 m
C-400m
D -500 m
Answer - C
Explanation

```
Relative pace of the policeman = (10-8) km/hr = 2 km/hr
Time taken by policeman to cover 100 m = (100/1000*1/2) hr = 1/20 hr
In 1/20 hr, the cheat covers a separation of (8*1/20) km=(2/5 km)=(2/5*1000) m
=400 m
```

Q 10 - I walk a sure separation and ride back setting aside an aggregate time of 37 minutes. I could walk both routes in 55 minutes. To what extent would it take me to ride both ways?

A-18 min
B-19 min

C-20 min

D-21min

Answer - B

Explanation

```
Let the given separation be x km. At that point,
(Time taken to walk X km)+ (time taken to ride x km) = 37 min.
=> (time taken to walk 2X km) + (time taken to ride 2x km) = 74 min.
=> 55 min + (time taken to ride 2 x km) = 74
=> time taken to ride 2x km = 19 min.
```

Q 11 - A and B are two stations 390 km separated. A train begins from An at 10 am and ventures towards B at 65 kmph . Another train begins from B at 11 am and towards A at 35 kmph . AT what time they meet?

A -2.15 pm
B-3.15 pm
C- 4.15 pm
D -5.15 pm

Answer - A

Explanation

```
Assume they meet x hours after 10 am then,
(separation moved by first in x hrs.) + (separation moved by second in (x-1) hrs)
= 390
\therefore65x+35(x-1)=390
=> 100x =425
=> x= 17/4
In this way, they meet 4 hrs 15 min. after 10 am at 2.15 pm
```

Q 12-A products train leaves a station at a sure time and at a settled rate. Following 6 hours, an express prepare leaves the same station and moves in the same bearing at a uniform velocity of 90 kmph . This train makes up for lost time the merchandise train in 4 hours. Discover the velocity of the merchandise train.

A-33 kmph
B - 34 kmph
C- 35 kmph
D-36 kmph

```
Answer - B
```


Explanation

```
Let the velocity of the merchandise train be \(x\) kmph.
Separation secured by products train in 10 hours \(=\) separation secured by express prepare in 4 hours
\(\therefore 10 x=4 * 90\) or \(x=36\)
Along these lines, rate of products train \(=36 \mathrm{kmph}\)
```

