APTITUDE - VOLUME CALCULATION

http://www.tutorialspoint.com/quantitative_aptitude/aptitude_volume_calculation.htm

Copyright © tutorialspoint.com

Advertisements

Important Fact and Formulae

Following are important facts and formulaes used in questions for volume calculations.

Cuboid

Let Length=L, Breath =b and Height =h units. Then,

- Volume = (L*b*h) cubic units.
- Surface area=2(Lb+bh+Lh) sq. units.
- Diagonal = $\sqrt{(L^2+b^2+h^2)}$ units.

Cube

Let each edge of a cube be of length a. Then,

- Volume=a³ cubic units.
- Surface area= $6a^2$ sq. units.
- Diagonal= $\sqrt{3}a$ units.

Cylinder

Let radius of base = r and Height (or length) =h. Then,

- Volume = $(\pi r^2 h)$ cubic units.
- Curved surface area= $(2\pi rh)$ sq. units.
- Total surface area= $(2\pi rh+2\pi r^2)$ sq. units. = $2\pi r$ (h+r) sq. units.

Cone

Let radius of base=r and Height (or length) = h. Then,

- Slant height= $\sqrt{h^2 + r^2}$ units.
- Volume = $(1/3 \pi r^2 h)$ cubic units.
- Curved surface area = (πrL) sq. units.
- Total surface area = $(\pi rL + \pi r^2)$ sq. units.

Sphere

Let the radius of the sphere be r. then,

- Volume = $(4/3 \pi r^3)$ cubic units.
- Surface area =($4\pi r^2$) Sq. unit

Hemisphere

Let the radius of the hemisphere be r. then,

- (i) Volume = $(2/3\pi r^3)$ cubic units
- (ii) Curved surface area = $(2\pi r^2)$ Sq. unit
- (ii) Total surface area = $3\pi r^2$ sq. unit.

Note:

 $1 \text{ litre} = 1000 \text{ cm}^3$

Solved Examples

Solved Examples