

SL4A

i

About the Tutorial

The Scripting Layer for Android (SL4A) is a library that helps write scripts targeting the

Android Platform. SL4A supports a number of scripting languages like Perl, Python, JRuby,

PHP etc. It can also be extended to support new languages.

While Java can be used for Android Development, it is a good thing when all you need to

do is write a simple test case or turn on or off settings on your device. This tutorial will

help you automate your Android device using simple Python scripts.

Audience

Android is the monopoly of Java enthusiasts. Well, if you are not a Java admirer and

wondering, how you can develop Android Apps, here is something for your benefit. This

tutorial introduces you to developing Android Applications using Python.

Prerequisites

Before you start proceeding with this tutorial, we are assuming that you are already aware

about the Python. If you are not well aware of these concepts, then we will suggest you

to go through our short tutorials on Python.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

SL4A

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

1. Android: An Overview ... 1

2. Android Architecture .. 2
Linux Kernel ... 2
Libraries and Runtime ... 2
Application Framework ... 2
Applications ... 3
Building Blocks ... 3

3. SL4A – Scripting Layer for Android .. 4
What is SL4A? .. 4
Why SL4A – Scripting Languages Vs JAVA ... 4

4. SL4A – Architecture ... 6
Script Interpreters ... 6
Android RPC Client .. 6
Facades .. 7
Using SL4A ... 7

5. Python Library .. 8

6. SL4A – Development Environment .. 9
Development Environment ... 9

7. SL4A – Configuring Your Device .. 12
Installing SL4A .. 12
Adding the Python Interpreter .. 13
Connecting to Windows OS ... 13

8. Navigating the Android SDK .. 15
SDK Components ... 15
SDK Manager ... 15
Android Emulator .. 16
Android Debug Bridge ... 17
The Shell .. 18
Dalvik Debug Monitor Service ... 18

9. Working with Eclipse .. 20
Basics of Eclipse ... 20
Installing Plugins for Eclipse .. 21
Python Interpreter in Eclipse ... 22

SL4A

iii

10. Exploring the Android API ... 23
What is a Facade Design Pattern? ... 23
SL4A and Android API Facades .. 24

11. Building GUIs .. 28
Python Dialog Box – Based GUIs.. 28
Examples .. 30
Modal Vs Non-Modal Dialog Boxes ... 30
Python GUIs with HTML .. 31

12. Utilities using Python Facades ... 33
Email-based Applications .. 33
Wifi Scanner .. 34
Call Logs ... 34

13. Background Scripting with Python .. 35
Background Tasks .. 35
Launch on Boot Scripts .. 35
Triggers .. 35

14. Packaging and Distributing.. 37
Quick Response (QR) Codes .. 37
Build Application Packages – Eclipse ... 38

SL4A

1

Android is a Linux based operating system, designed primarily for portable devices like

smartphones and tablet. Android is more than an operating system. It is a software stack

that provides many features for users, developers and manufacturers.

Android Version Features

Android (Alpha) 1.0 First version of Android

Android 1.5 (Cupcake)
Added auto-rotation option, copy and paste feature

added in the web browser

Android 1.6 (Donut) Voice search and Search box were added

Android 2.0/2.1 (Éclair) Bluetooth 2.1 support

Android 2.2/2.2.3(Froyo) Support for Adobe Flash 10.1

Android 2.3/2.3.7

(Gingerbread)

Internet calling, one touch word selection and

copy/paste

Android 3.0/3.2.6

(Honeycomb)

This version is available only for tablets.

Features include support for multi-core processors,

ability to encrypt all user data

 Android 4.0/4.0.4

(Ice cream sandwich)

Virtual button in the UI, ability to shut down apps that

are using data in the background

Android 4.1/4.3.1 (Jelly

Bean)

Based on Linux Kernel 3.0.31

Smoother User Interface, Bluetooth data transfer for

Android Beam

Android

4.4/4.4.4,4.4W/4.4W.2

(KitKat)

Integration with cloud storage, Built-In sensors, Lock Art

Screen

Android 5.0/5.1.1 (Lollipop)

Improved RAM and Battery Management, Fixes for

sudden App closure, issues with wireless connections,

notifications etc.

It is open source and business friendly. The user can choose to replace built-in applications

with applications of their choice. Many versions of Android have been released since its

original release.

1. Android: An Overview

SL4A

2

The Android software stack comprises of different layers, each layer manifesting well-

defined behavior and providing specific services to the layer above it. The following figure

presents a broad architecture of Android with its primary components.

Linux Kernel

Android is built on the Linux kernel code modified to run on embedded systems as against

the traditional Linux system. Hardware drivers for many common devices are built into the

kernel, thereby ensuring device portability. It is based on secure user based permission

model, which prevents one application from reading another application’s information or

from interfering with its execution (e.g. CPU, memory, devices etc.).

Group ID based access to networking and Bluetooth features, logger, alarm, power

management, low memory killer, Binder IPC mechanisms are a few noted enhancements

to the Kernel.

Libraries and Runtime

This forms the second layer of the architecture. It includes a set of hardware optimized C,

C++ libraries, also referred to as the native layer. Examples include Media Libraries,

SQLite, SSL, Bionic, WebKit etc.

The Android Runtime comprises of two different components: the Dalvik VM and Core

Libraries. The Dalvik VM provides an execution environment for the applications on the

Android Platform. The set of core libraries provides most of the functionality available in

Java APIs.

Application Framework

This layer makes available the Libraries as services to the applications. Some most

important components within this layer include Location Manager, Resource Manager,

Activity Manager and Notification Manager.

2. Android Architecture

SL4A

3

Applications

By default, Android comes with a rich set of applications, including the browser, SMS

program, calendar, contact manager, maps etc. Google Play provides alternatives to these

applications, if the user desires so.

Building Blocks

An application can interface with the system with four function blocks. They are as follows:

 Activities: Activities represent a single screen that the user sees or interacts with

visually. For example, an email app might have one activity that shows a list of

new emails, another activity to compose an email, and another activity for reading

emails.

 Services: A majority of processing is done by these services for your application.

It is the logic behind the user interface. For example, a service might play music in

the background while the user is in a different app, or it might fetch data over the

network without blocking user interaction with an activity.

 Broadcast Receivers: A component that can be registered to listen for system or

application events and issue notifications about the same. An instance for broadcast

originating from the system is a ‘low battery notification’ while an application

level broadcast could be a ‘download successful’ notification.

 Content Providers: A content provider manages and helps you share data

between multiple applications. For e.g. a content provider may be used to share

the contacts data.

These components interact with each other through messages called Intents.

SL4A

4

Android scripting is a handy tool for simple tasks such as automation and prototyping as

against using the Java programming language for the same. The Scripting Layer for

Android (SL4A) provides a platform for multiple scripting solutions on the android platform.

What is SL4A?

The Scripting Layer for Android (SL4A) is a library that provides a platform to write simple

scripts to automate tasks on an android device using languages other than JAVA.

SL4A, originally called Android Scripting Environment (ASE), was first announced on the

Google Open Source blog in June 2009. The project saw the light of the day primarily

through the efforts of Damon Kohler and it has grown through the contributions of other

developers.

It supports most popular scripting languages. These include:

 Beanshell 2.0b4

 JRuby 1.4

 Lua 5.1.4

 Perl 5.10.1

 PHP 5.3.3

 Python

 Rhino 1.7R2

 Javascript

 TCL

Why SL4A – Scripting Languages Vs JAVA

One of the first questions one would probably ask is, “Why use SL4A instead of Java?”

Firstly, not everyone is a fan of Java. Scripting languages provide an easy programming

environment as compared to Java.

Secondly, the language requires the use of an edit/compile/run design loop. This means

that you edit, re-compile and then run the application each time you desire some

modification. On the contrary, scripts are interpreted and executed on the fly. Moreover,

SL4A even makes it possible, in many cases, to reuse code written for a desktop

environment.

3. SL4A – Scripting Layer for Android

SL4A

5

The following figure illustrates scripts written in Python targeting SL4A and in Java

respectively.

SL4A

6

SL4A has three main components. They are as follows:

 Script Interpreters

 Android RPC Client

 Facades

In this chapter, we will discuss more about these three components.

Script Interpreters

SL4A acts a scripting host. It supports many scripting languages such as Python, Ruby,

Lua, BeanShell, JavaScript and TCL . SL4A can be extended by incorporating new scripting

languages dynamically by developing a new SL4A interpreter for that scripting language.

Each script runs in its own interpreter instance. Hence, multiple scripts can run

simultaneously without affecting each other.

Android RPC Client

Scripts running within the interpreter instance communicates with the SL4A application

through the Android Proxy RPC Client. The client establishes a Remote Procedure Call

(RPC) connection to SL4A, and allows scripts to interact with the Android Framework. The

SL4A facades facilitate this communication. Data is sent as JSON payloads.

Android RPC clients are provided for every supported scripting language. The client

modules can be obtained from the SL4A website at http://code.google.com/android-

scripting/wiki/AndroidFacadeAPI.

4. SL4A – Architecture

http://code.google.com/android-scripting/wiki/AndroidFacadeAPI
http://code.google.com/android-scripting/wiki/AndroidFacadeAPI

SL4A

7

Facades

The façade simplifies the script’s access to the underlying Android API. SL4A exposes the

Android Framework API to scripts through an extensive set of facades like AndroidFacade,

BluetoothFacade, ActivityManagerFacade, CommonIntentsFacade, etc.

SL4A functionality offers a basket of rich functionalities like Camera, Location, Battery

Manager, Media Player, Media Recorder and many more.

Using SL4A

The SL4A system is suited for the following kinds of tasks:

 RAD programming: With SL4A, it is possible to use Rapid Application

Development (RAD) approach to create a prototype application quickly. You can

create a full-blown Android application if the feasibility of the idea is confirmed.

 Test scripts: It can be used to write test scripts.

 Building Utilities: Utility scripts or tools that perform small tasks or automate

certain aspects of repetitive tasks can be built using SL4A.

SL4A

8

Python has a standard library, which includes a wide variety of routines that help you code

and reuse these codes easily. A Module is a Python file that has definitions of variables

and a set of related routines or functions.

Some of the core Modules provided by the Python library are as follows:

 Built-in Functions and Exceptions – Python imports both these modules when

it starts up and makes their content available for all programs. The built-in module

defines built-in functions like len, int, range, while the exceptions module defines

all built-in exceptions.

 Operating System Interface Modules – The OS module makes available, the

functions that enables performing OS level operations through scripts.

 Type Support Modules – Type support modules include string module-to

implement, commonly used string operations; math module provides

mathematical operations etc.

 Regular Expressions – Regular Expressions are string patterns written in a

specific syntax, which can be used to match or extract strings or substrings. The

re module provides Regex support for Python.

 Language Support Modules – The sys module gives you access to various

interpreter variables, such as the module search path, and the interpreter version.

The operator module provides functional equivalents to many built-in operators.

The copy module allows you to copy objects. Finally, the gc module gives you more

control over the garbage collector facilities in python 2.0.

About JSON

The JavaScript Object Notation (JSON) is a data-interchange format. Though many

programming languages support JSON, it is especially useful for JavaScript-based apps,

including websites and browser extensions. JSON can represent numbers, Booleans,

strings, null, arrays (ordered sequences of values), and objects (string-value mappings)

made up of these values (or of other arrays and objects).

5. Python Library

SL4A

9

This chapter details the procedure to set up your development environment. It also

discusses how to configure your device to use SL4A.

Development Environment

You must download and install several pre-requisites before you can start developing with

SL4A.

Java Development Kit (JDK)

To begin with, you should have a recent version of JDK (JDK 5 or upwards) installed on

your system.

To confirm that a compatible version of the JDK installed available to the environment,

execute the following on the command line or console terminal, as follows:

$javac –version

$java –version

Note: Set the PATH environment variable to jdk/bin folder

Python

It is likely that Python is installed on Mac OS X and Linux, by default. Windows OS, by

default, does not have Python installed. Python can be downloaded from

http://python.org/download/releases.

Once installed, modify your Windows path to add the Python directory.

To verify if Python is installed on your system, open the terminal window and enter Python.

6. SL4A – Development Environment

http://python.org/download/releases

SL4A

10

Android.py file

The only additional file that one needs to download is the android.py file. Include a copy

of this file under /Lib/site-packages in the Python installation directory. This file includes

python modules for Android development.

Android SDK

A number of tools are provided with the Android SDK. The first step is to download the

appropriate install file for your operating system. Installers for Mac OS X, Linux and

Windows are available. The SDK installer can be found at

https://developer.android.com/sdk.

https://developer.android.com/sdk

SL4A

11

The development environment discussed here is Windows. Google provides a zip file and

an executable to install SDK on Windows.

Installing Eclipse on a Development Machine

Eclipse was developed as an extensible, Integrated Development Environment (IDE)

written in Java language. It requires an installation of Java to work. Eclipse comes in many

flavors – Classic, Galelio, Luno, Mars, Neon, etc.

It is distributed in a single .zip file. All you have to do is unpack the program contents.

The extracted folder has an Eclipse.exe file. Double click the file to start the program.

SL4A

12

Installing SL4A

At times, you may want to write scripts on the device and execute them. The Scripting

Layer for Android helps achieve the same. To install SL4A on your device, follow the steps

given below:

1. Download the SL4A.apk file on your device.

2. Launch the .apk file from the notifications screen.

3. Select Install on the next screen to actually install SL4A.

Alternatively, if you choose to use an emulator as against an android device, install SL4A

using the browser inside the emulator. The SL4A installation initial screen on a device is

shown below.

7. SL4A – Configuring Your Device

SL4A

13

Adding the Python Interpreter

To install the python interpreter on a device, follow the steps given below:

 Step 1: Start the SL4A application.

 Step 2: Click the Menu button.

 Step 3: A list of options will be displayed. Select View.

 Step 4: Select the Interpreter option from the dialog box. Click Add.

 Step 5: A list of interpreters available for download is displayed. Select Python

2.62 (or greater).

To install python interpreter on an emulator, follow the steps given below:

 Step 1: Ensure that the emulator is running in the background.

 Step 2: Download python_for_android_rx.apk.

 Step 3: In the terminal command-line shell, navigate to the location where the apk

file is stored and type the following on the command line:

adb install python_for_android_rx.apk

SL4A supports scripting engine for mul tiple languages. A list of some language specific

apk files are mentioned below:

 beanshell_for_android_rx.apk

 jruby_for_android_rx.apk

 lua_for_android_rx.apk

 perl_for_android_rx.apk

 python_for_android_rx.apk

 rhino_for_android_rx.apk

Connecting to Windows OS

Step 1: Download and Install the USB Driver for Windows

Step 2: Setup your device:

 Start SL4A from All apps screen on the device.

 Tap the Menu button → View.

 Choose the interpreters from the list.

 Tap the Menu button → Start Server

 Select Public (to connect over Wi-Fi) or Private(to connect over USB).

Step 3: Add an environment variable (User variable) AP_PORT and value 9999.

SL4A

14

Android SDK and Eclipse have been discussed in the subsequent chapters.

SL4A

15

A software development kit that enables developers to create applications for the Android

platform. The Android SDK includes sample projects with source code, development tools,

an emulator, and required libraries to build Android applications. This chapter discusses

the Android SDK and ways to use it for developing the code targeted at SL4A.

SDK Components

The directory tree where you installed the Android SDK, contains a list of folders containing

documentation, sample code and a number of tools. Navigating to the tools subdirectory

reveals a number of executable files.

Discussed below are some important components within the Android SDK:

SDK Manager

The Android SDK Manager separates the SDK tools, platforms, and other components into

packages for easy access and management. The SDK can be configured to check for new

or updated SDK packages and add-on tools.

8. Navigating the Android SDK

SL4A

16

By default, Android Studio does not check for Android SDK updates. To enable automatic

Android SDK checking:

 Step 1: Choose File -> Settings -> Appearance & Behavior -> System Settings

-> Updates.

 Step 2: Check the Automatically check updates for Android SDK checkbox and

select an update channel.

 Step 3: Click OK or Apply to enable the update checking.

The SDK Update Sites tab displays the sites that Android Studio checks for Android SDK

and third-party updates. You can add other sites that host their own Android SDK add-

ons, then download the SDK add-ons from those sites.

Android Emulator

The AVD Manager provides a graphical user interface in which you can create and

manage Android Virtual Devices (AVDs), which are required by the Android Emulator. An

Android Virtual Device (AVD) consists of a number of files including configuration and

virtual storage required by the emulator. You can create as many AVDs as you want for

simulating different devices.

The following steps can be used to create an AVD in Eclipse:

 Step 1: Select Window → AVD Manager.

 Step 2: Click New.

 Step 3: Type the name of the AVD, choose the target and specify values for the

other features.

 Step 4: Click Create AVD.

For devices with keyboard, there is a standard set of mappings from the host keyboard to

actions on the device. The default Emulator key mappings are:

Emulator Key Mapping on Host Device

BUTTON_CALL F3

BUTTON_HANGUP F4

BUTTON_HOME Home

BUTTON_BACK Escape

BUTTON_MENU F2, PageUp

BUTTON_STAR Shift+F2,PageDown

BUTTON_POWER F7

BUTTON_SEARCH F5

BUTTON_CAMERA Ctrl+Keypad_5, Ctrl+F3

SL4A

17

BUTTON_VOLUME_UP Keypad_Plus, Ctrl+F5

BUTTON_VOLUME_DOWN Keypad_Minus, Ctrl+F6

TOGGLE_NETWORK F8

TOGGLE_TRACING F9

TOGGLE_FULLSCREEN Alt-Enter

BUTTON_DPAD_CENTER Keypad_5

BUTTON_DPAD_UP Keypad_8

BUTTON_DPAD_LEFT Keypad_4

BUTTON_DPAD_RIGHT Keypad_6

BUTTON_DPAD_DOWN Keypad_2

TOGGLE_TRACKBALL F6

SHOW_TRACKBALL Delete

CHANGE_LAYOUT_PREV Keypad_7, Ctrl+F11

CHANGE_LAYOUT_NEXT Keypad_9, Ctrl+ F12

ONION_ALPHA_UP Keypad_Multiply

ONION_ALPHA_DOWN Keypad_Divide

You can change these settings by editing the default.keyset file in the .android

subdirectory.

Android Debug Bridge

ADB, Android Debug Bridge, is a command-line utility included with Google’s Android SDK.

ADB can control your device over USB from a computer, copy files back and forth, install

and uninstall apps, run shell commands, and more.

If you have an emulator running and a real device connected, you must specify where you

want the ADB commands to a real device, use the option –d and for the emulator, use

–e. Following is the list of flags and commands for ADB.

ADB flags

Description

-d

Directs device to the only connected USB device;

returns an error if more than one USB device is

connected

-e
Directs command to the only running emulator;

returns an error if more than one emulator is running

-s <serial_number>
Directs command the USB device or emulator with

the given serial number

SL4A

18

devices List all connected devices

connect <host>:<port> Connect to a device via TCP/IP

disconnect <host>:<port> Disconnect from a TCP/IP device

ADB commands Description

adb push <local> <remote> Copy file/dir to device

adb pull <remote> [<local>] Copy file/dir from device

adb sync [<directory>]

If <directory>is not specified, both /system and

/data partitions will be updated. If it is “system” or

“data”, only the corresponding partition is updated.

adb shell Run remote shell interactively

adb emu <command> Run emulator console command

adb logcat View device log

adb forward <local> <remote> Forward socket connections

adb install [-l] [-r] [-s] <file>

Push this package file to device and install it. (-l

forward lock the app)

(-r reinstall the app, keeping its data)

(-s install on SD card instead of internal storage)

adb uninstall [-k] <package>
Remove this app package from the device.

-k means keep the data and cache directories

adb bugreport
Return all information from the device that should be

included in the bug report

adb help Show this help message

adb version Show version number

The Shell

A shell is a program that listens to keyboard input from the user and performs actions as

directed by the user. The adb shell command provides Unix to send shell commands to

an emulator or a connected device and display the results. It can also be used to launch

an interactive shell locally.

To issue a single command without entering a remote shell, use the shell command like

this:

adb [-d|-e|-s <serialNumber>] shell <shell_command>

Or to enter a remote shell on an emulator/device:

adb [-d|-e|-s <serialNumber>] shell

When you are ready to exit the remote shell, press CTRL+D or type EXIT.

Dalvik Debug Monitor Service

Android ships a debugging tool, Dalvik Debug Monitor Service (DDMS). This tool provides

additional services such as port-forwarding services, screen capture on device, incoming

call and SMS spoofing etc.

SL4A

19

When DDMS starts, it connects to adb. A VM monitoring service is created between adb

and DDMS, when a device is connected. This service notifies DDMS when a VM on the

device is started or terminated. ‘

Once the VM starts running, its process id is sent to the DDMS via adb and the adb

daemon opens a connection to the VM’s debugger. DDMS can now talk to the VM using a

custom wire protocol.

Logcat

Devices

SL4A

20

This chapter will walk you through the basics of Eclipse IDE and configuring it to develop

Python scripts for Android.

Basics of Eclipse

Eclipse is an application with many capabilities and options. A welcome screen will greet

you, the first time you launch the program. Eclipse uses a number of basic concepts and

terminology to address different functions and operations of the program.

Some of these terminologies are explained here:

Workbench: It identifies the overall window of the Eclipse application. It contains multiple

child windows, each window containing multiple tabs.

Workspace: It refers to the location on your system’s file system where projects created

using Eclipse will be saved.

Perspective: It is a personal preference for which menus and windows are open at any

one time. Eclipse has a number of perspectives configured for typical usage, such as

writing code, debugging etc. You can also switch to a different perspective when your

activity changes. Perspectives are also customizable.

9. Working with Eclipse

SL4A

21

Installing Plugins for Eclipse

One needs to configure Eclipse to be able to develop SL4A applications. Once the pre-

requisites are installed successfully on the host, the following plugins for Eclipse must be

added:

 ADT plugin for Eclipse (available at http://dl-ssl.google.com/android/eclipse/)

 Python Plugin for Eclipse (available at http://pydev.org/updates)

The following steps can be used to install plugins on Eclipse:

 Step 1: Click Help.

 Step 2: Select Install New Software.

 Step 3: Click Add.

 Step 4: Specify the name and the URL to access the plugin. Click OK.

 Step 5: Select all the tools and click Next. The plugin installation starts.

http://dl-ssl.google.com/android/eclipse/
http://pydev.org/updates

SL4A

22

Python Interpreter in Eclipse

Follow the given steps to configure Python Interpreter in Eclipse.

 Step 1: Select Windows → Preferences

 Step 2: Go to PyDev → Interpreter → Python

 Step 3: Click the New button.

 Step 4: Specify a name for the interpreter. In the Location field, enter the path to

python.exe. For example, C:\Python26\python.exe

 Step 5: Click OK.

SL4A

23

SL4A is based on the Facade Design Pattern to communicate with the underlying Android

API. This chapter explains the working of Façade Design Pattern and the different SL4A

API facades.

What is a Facade Design Pattern?

A facade is an object that provides an interface that simplifies the access to the related

interfaces in the application. In other words, a façade insulates the working of the libraries

from the client and acts as an entry point to each subsystem level. Thus, the clients

communicate only through their facades. The following illustration explains the same.

10. Exploring the Android API

SL4A

24

SL4A and Android API Facades

SL4A hosts interpreters for each language it supports. The interpreters access the

underlying Android APIs through an interface called a façade.

The following table lists the top-level facades and the functionality they provide:

Android API Facade Description

ActivityResultFacade

It sets how your script will return information as an

activity. This method implies that your script will return

a result of some kind. The result type can be set to

either RESULT_CANCELED(0) or RESULT_OK(-1)

AndroidFacade

It provides access to common Android functions like

reading input, notifications, launching application

components etc.

ApplicationManagerFacade

List all available and running packages, launch an

activity, create your task manager or terminate a

specific set of packages.

BatteryManagerFacade

Exposes the battery manager and allows tracking

battery status, health, type level, voltage etc.

BluetoothFacade

Provides access to Bluetooth capabilities from basic

connection features to sending and receiving both

ASCII and binary data. This façade requires at least API

level 5.

CameraFacade

This method provides access to all camera-related

functions. Allows taking a picture using the device’s

camera and saving it to a specified path. It provides two

functions namely cameraCapturePicture and

cameraInteractiveCapturePicture. These functions are

strictly for using the lens on the rear of the device.

CommonIntentsFacade

Provides access to common Android Intents like

opening a list of contacts, making a map search,

starting an activity by action etc.

ContactsFacade

Allows access to contacts such as providing the contact

list for picking a contact, querying the contact list by

attributes and getting a list of all contacts with their IDs

and attributes. Some methods provided by the façade

include contactsGet, pickContact, contactsGetById etc.

SL4A

25

EventFacade

The Android OS maintains an event queue for passing

information between applications asynchronously. This

façade provides functions to manage the event queue

such as clearing the existing events, posting new

events, listing, registering and unregistering broadcast

signals etc. Exmaples of methods include eventPost,

eventClearBuffer, etc.

EyesFreeFacade

Available on devices below API level 4. It allows scripts

to speak using text-to-speech technology. This façade

is now replaced by TextToSpeechFacade. The only

available function is ttsSpeak.

LocationFacade

Provides functions that enables tracking the current

location either by GPS or by using information about

the cell tower you’re currently using. This feature

requires an active internet connection to do the actual

lookup. The façade provides methods like

getLastKnownLocation, startLocating, stopLocating,

readLocation etc.

MediaPlayerFacade

Allows playing media files, controlling the media player,

querying the current status of the media player and

getting information about the media files.

mediaIsPlaying, mediaPlayInfo and mediaPlayList

returns the current state of the media player. A call to

the startActivity function launches the media player.

Functions like mediaPlay, mediaPlayPause,

mediaPlayClose, mediaPlaySeek,mediaPlayStart and

mediaPlaySetLooping are used to control the media

player.

MediaRecorderFacade

This façade provides audio and video recording

capability. startInteractiveVideoRecording,

recorderStartMicrophone, recorderCaptureVideo

functions are used to launch and start audio/video

recording respectively. To end a previously started

recording call the recorderStop function

PhoneFacade

Makes available basic phone operations like tracking

phone state, roaming status, initiating calls, SIM

information etc. programmatically. Examples of

methods include phoneCallNumber, phoneDialNumber,

getCellLocation etc.

PreferencesFacade

Allows access to shared preferences like getting the list

of existing preferences and reading, modifying and

SL4A

26

adding new preferences. There are three functions

supported by SL4A r4 release: prefGetAll, prefGetValue

and prefPutValue.

SensorManagerFacade

Allows tracking sensor data such as light,acceleration,

magnetic field and orientation. To start/ stop sensing

use the startSensing (deprecated and replaced with

startSensingThreshold and startSensingTimed by

SL4r4) and stopSensing function calls. readSensors,

sensorsGetLight, sensorsReadAccelerometer,

sensorsReadMagnetometer and

sensorsReadOrientation are the functions provided by

this façade.

SettingsFacade

Provides access to different phone settings like ringer

volume, screen brightness, airplane mode, vibration,

media volume etc. Functions provided by this façade

are checkAirplaneMode, checkRingersilentMode and

checkScreenOn(atleast API level 7), getVibrateMode,

setScreenTimeout, toggleVibrateMode

setRingerVolume etc.

SignalStrengthFacade

Allows monitoring phone signal strength. Call the

startTrackingSignalStrengths function to start

gathering data. Call the readSignalStrengths function

to start gathering data. To shut down the process call

the stoptrackingSignalStrengths function. It requires

at least API level 7.

SmsFacade

It has functions for deleting, reading, marking and

sending SMS messages. Examples of functions provided

by this façade include smsMarkMessageRead,

smsDeleteMessage, smsSend etc.

SpeechRecognitionFacade

Enables adding specch recognition functionality to the

script. It has only one function named

recognizeSpeech.

TextToSpeechFacade

Provides TTS services for API4 and later. To have a

device speak use the ttsSpeak function. To determine

if the speak function has completed use the

ttsIsSpeaking function.

ToneGeneratorFacade

Generates DTMF tones for given digits. To use it you

must call the generateDtmfTones function.

SL4A

27

UiFacade

Provides functions for creating user interface elements

like textboxes, checkboxes, datepickers etc. It also

allows interactive use of HTML pages.

WakeLockFacade

Provides functions to create a wake lock include

wakeLockAcquireBright, wakeLockAcquireDim,

wakeLockAcquireFull and wakelockAcquirePartial.

WebCamFacade

This façade requires at least API level 8. It allows

streaming MJPEG streams from the front-facing device

camera to the network. To start/stop the webcam use

the webcamStart and the webcamStop functions

respectively. To adjust the quality of the video while

streaming use the webcamAdjustQuality function.

WifiFacade

Helps you to control the Wi-Fi radio on your device. It

allows scripts to query the status of Wi-Fi connectivity,

search for access points, connect to and disconnect Wi-

Fi networks and hold a Wi-Fi lock during script

execution.

Refer http://code.google.com/p/android-scripting/wiki/ApiReference for a full list of

methods provided by these facades. The subsequent chapters illustrate how to create

utilities using Android Façade API functions.

http://code.google.com/p/android-scripting/wiki/ApiReference

SL4A

28

A Graphical User Interface (GUI) represents a set of graphical components that enables

the user to browse, access and interact with the application functionalities.

There are two basic approaches to user interaction with SL4A namely:

1. Dialog boxes such as Alerts.

2. Using HTML and JavaScript to build the UI and then Python behind the scenes to

handle any additional processing

This chapter explains both the approaches.

Python Dialog Box – Based GUIs

SL4A includes a UI façade to access the basic UI elements provided by the android API.

These functions return a result object as a named tuple when called. Each result is

assigned a unique id for tracking purpose. The second element is the result. It represents

the user’s input. The tuple also includes the third element error to provide feedback to the

caller about any error condition that might have been encountered. If no errors were

encountered this element is set to None.

 The following table lists the commonly used UiFacade functions.

UiFacade Function Description

dialogGetInput

Queries the user for a text input.

title (String) title of the input box (default=Value)

message (String) message to display above the

input box (default=Please enter value:)

defaultText (String) text to insert into the input box

(optional)

The result is the user's input, or None (null) if cancel

was hit.

dialogShow Show dialog

dialogCreateAlert

Create alert dialog.

title (String) (optional)

message (String) (optional)

dialogDismiss Dismiss dialog.

dialogCreateDatePicker

Create date picker dialog.

year (Integer) (default=1970)

month (Integer) (default=1)

11. Building GUIs

SL4A

29

day (Integer) (default=1)

dialogCreateTimePicker

Create time picker dialog.

hour (Integer) (default=0)

minute (Integer) (default=0)

is24hour (Boolean) Use 24 hour clock

(default=false)

dialogGetPassword

Queries the user for a password.

title (String) title of the password box

(default=Password)

message (String) message to display above the

input box (default=Please enter password:)

dialogGetResponse
Returns dialog response.

dialogSetPositiveButtonText
Set alert dialog positive button text.

text (String)

dialogSetNegativeButtonText
Set alert dialog button text.

text (String)

dialogSetNeutralButtonText
Set alert dialog button text.

text (String)

dialogSetSingleChoiceItems This creates a list of radio buttons.

dialogSetMultiChoiceItems This creates a checkbox

dialogCreateHorizontalProgress

Create a horizontal progress dialog.

title (String) (optional)

message (String) (optional)

maximum progress (Integer) (default=100)

dialogCreateSpinnerProgress

Create a spinner progress dialog.

title (String) (optional)

message (String) (optional)

maximum progress (Integer) (default=100)

addContexMenuItem

Adds a new item to context menu.

label (String) label for this menu item

event (String) event that will be generated on

menu item click

eventData (Object) (optional)

addOptionsMenuItem

Adds a new item to options menu.

label (String) label for this menu item

event (String) event that will be generated on

menu item click

eventData (Object) (optional)

iconName (String)

webViewShow Display a WebView with the given URL.

url (String)

SL4A

30

wait (Boolean) block until the user exits the

WebView (optional)

clearContextMenu
Removes all items previously added to context

menu.

clearOptionsMenu Removes all items previously added to options menu

makeToast Create a notification

Examples

A simple Toast Example

import android

droid=android.Android()

uname=droid.getInput("Enter your name")

print uname

droid.makeToast("Hello %s" %uname.result)

A Horizontal Progress Bar

import android

 droid=android.Android()

 title="Progress"

 str="Loading..."

 droid.dialogCreateHorizontalProgress(title,str,100)

 droid.showDialog()

 for x in range(0,99)

 time.sleep(0.1)

 droid.dialogSetCurrentProgress(x)

 droid.dialogDismiss()

Modal Vs Non-Modal Dialog Boxes

A modal dialog box or window is a child to another process or window. With a modal dialog

box, processing will wait or block until the user interacts with the new dialog box.

A typical example of this case is an alert dialog box. The alert will not close until the user

performs an action.

SL4A

31

The following image is an example of a modal dialog box.

To sum up, use a modal dialog box when you need input from the user before you continue

execution.

Python GUIs with HTML

SL4A enables building Graphical User Interfaces (GUIs) based on CSS, HTML, JavaScript

and Python. The approach uses HTML and JavaScript to build the UI, CSS to enhance the

appearance and consistency of HTML elements and fonts and Python to handle any

additional processing.

The following example illustrates a basic HTML GUI example:

1. Speech.html

<html>

 <head>

 <title>Text To Speech</title>

 <script>

 var droid=new Android();

 var speak=function(){

droid.postEvent(“say”,document.getElementById(“say”).value);

}

</script>

</head>

SL4A

32

 <body>

 <form onsubmit=”speak()”;return false;”>

 <label for=”say”>What is your message?</label>

 <input type=”text” id=”say”/>

 <input type=”submit” value=”Speak”/>

 </form>

 </body>

</html>

2. txtToSpeech.py

import android

droid=android.Android()

droid.webViewShow(‘file:///sdcard/sl4a/scripts/Speech.html’)

while True:

 result=droid.waitForEvent(‘say’).result

 droid.ttsSpeak(result[‘data’])

Both the files- Speech.html and txtToSpeech.py, must reside in the

/sdcard/sl4a/scripts directory on the device. Run the python script to launch the HTML

file.

This file is launched by the webViewShow API call. The event is generated when the

Speak button is clicked.

SL4A

33

Email-based Applications

Email based applications are one of the most common utilities available in a mobile device.

One can use the sendEmail API call available through the SL4A Android facade.

This function takes three parameters:

 to_address: a comma-separated list of recipients.

 title: represents the title of the email message.

 message: represents the message to be sent.

import android,datetime,smtplib

from email.mime.multipart import MIMEMultipart

from email.mime.text import MIMEText

droid=android.Android()

serv=’smtp.gmail.com’

port=587

mailto=’chris’

mailfrom=’charley’

pass=’pass@123’

msg=MIMEMultipart()

msg[‘Subject’]=’Tes Mail’

msg[‘To’]=mailto

msg[‘From’]=mailfrom

body=’This is a test mail!!’

msg.attach(MIMEText(body,’plain’))

smtpCon=smtplib.SMTP(serv,port)

smtpCon.starttls()

smtpCon.login(mailfrom,pass)

smtpSendmail(mailfrom,mailto,msg.as_string())

smtpCon.close()

The python library that have used to build the email program is smtplib. In addition, we

have used the email library. This library contains a number of helper functions allowing us

to construct our message in the correct form. The mimetypes library helps with the

encoding of our message.

12. Utilities using Python Facades

SL4A

34

Wifi Scanner

The following code lists all available Wi-Fi access spots:

import android, time

def main():

 global droid

 droid=android.Android()

while not droid.wifiStartScan().result:

 time.sleep(0.25)

networks={}

while not networks:

 for ap in in droid.wifiGetScanResults().result:

 networks[ap[‘bssid’]]=ap.copy()

 droid.dialogCreateAlert(‘Access Points’)

 droid.dialogSetItems([‘%(ssid)s,%(level)s,%(capabilities)s’ % ap for ap in

networks.values()])

droid.dialogSetPositiveButtonText(‘OK’)

dorid.dialogShow()

if __name__=’__main__’:

 main()

Call Logs

The code for call logs is given below.

import android

droid=android.Android()

mylog=droid.getConstants(“android.provider.Calllog$Calls”).result

calls=droid.queryContent(mylog[“CONTENT_URI”],[“name”,”number”,”duration”]).res

ult

for c in calls:

 print c

SL4A

35

A service is a component, which runs in the background, without direct interaction with

the user. It does not have any UI (user interface). The service runs in the background

indefinitely even if application is destroyed.

This chapter describes the writing scripts that perform specific tasks in the background.

Background Tasks

SL4A enables a script to run in a terminal or in the background. To launch a script in the

background choose the icon that looks like a cog wheel. The script runs in the background

infinitely. However, one may choose to explicitly shut down such services.

Launch on Boot Scripts

These scripts are launched whenever the device boots. The Launch on Boot preferences

screen is an application that lets you specify the device’s boot preferences. The utility

supports execution of multiple scripts via a Master script. The Master script launches the

other scripts.

Triggers

A trigger defines a set of actions that must be performed in response to an action/event.

Triggers may be added as well as deleted. The /sdcard/sl4a/scripts directory allows you

to choose a script to run when an event is triggered. The list of options that may trigger

you script includes battery, location, phone, sensors and signal strength.

Orientation-based Actions

SL4A lets us run scripts depending on the orientation and movement of the device. The

startSensingTimedAPI is used to determine the orientation and movement of the device.

The following snippet uses TTS function to notify the user when the phone has been placed

face down:

import android,time

droid=android.Android()

droid.startSensing()

while True:

 res=droid.sensorsGetLight().result

 if res is not None and res <=10:

 droid.ttsSpeak("Device faced down!!")

 time.sleep(5)

13. Background Scripting with Python

SL4A

36

Location-based Actions

Library, church are the locations that you may frequently visit and you definitely want to

silence your phone when you are there. SL4A allows you to build scripts that will track

your location and take specific actions.

Time-based / Elapsed-Time-based Triggers

These triggers are used to perform actions at a specific time of day. The 24-hour time

format should be used to specify the time. Examples include a script to set alarm,

reminders etc. As against a time-based trigger, an elapsed time-based trigger executes

the script after an elapsed number of time. The snooze option on an alarm application is

based on this concept.

SL4A

37

This chapter explains the ways to package and distribute scripts using Eclipse and QR

codes.

Quick Response (QR) Codes

Most Android devices include a native barcode scanner. SL4A supports importing QR codes

directly into the editor. A QR code can only encode 4,296 characters of content. Hence,

this method of distribution is suitable for short scripts.

There are several websites where you can paste text and create a QR code. However, we

shall reference http://zxing.appspot.com/generator to generate the QR code in our

illustration.

The steps are explained below:

Step 1: Open the Contents drop-down and choose Text.

Step 2: On the first line of the Text Content, enter the name of the script (e.g.,

greet.py).

Step 3: Paste the script content below that.

Step 4: Choose the barcode size from the Size drop-down.

Step 5: Click Generate.

14. Packaging and Distributing

http://zxing.appspot.com/generator

SL4A

38

Step 6: Embed the resulting barcode image or share it.

Thus, QR code is an effective way to share short scripts through a blog or a website.

Build Application Packages – Eclipse

Android applications are distributed in a single file/package with an .apk extension. The

Android Package (.apk) is similar to a .jar or .zip file. Each .apk contains a number of

mandatory files that must be present. The most important file is the

AndroidManifest.xml.

The manifest file does a number of things:

 Declares application components

 Identify user permissions the application requires

 Declares hardware and software features used or required by the application, such

as camera, Bluetooth services etc.

 Specifies API libraries the application needs to be linked against, such as the Google

Maps Library.

The steps to build a distributable project i.e. .apk in eclipse are illustrated below:

1. Download and install Hg from mercurial:

http://mercurial.selenic.com/wiki/Download. Set the PATH variable to the

installation folder.

2. Create a clone of the latest SL4A repository: Open the terminal and navigate to

the directory where the clone must be created. Enter the following Hg clone:

https://android-scripting.googlecode.com/hg/android-scripting.

3. Open Eclipse and click on File/Import/General/Existing Projects into

Workspace/Next and Browse to the cloned directory. Click on Android/OK then

select all and click Finish.

4. Include ANDROID_SDK in the Classpath Variable list by clicking

Windows/Preferences/Java/BuildPathVariables/New. Put ANDROID_SDK for the

name and your SDK directory for the folder (probably

c:\ProgramFiles\Android\android-sdk-windows).

5. Click Project/Build Automatically, then Project/Clean/Clean all Projects/OK.

6. To turn your script into an APK, make a copy of ScriptForAndroidTemplate

(right click/copy then right click/paste into the same area). A new project will

appear with the name Copy of ScriptForAndroidTemplate.

7. To connect this project to your clone of SL4A, double click on it, right click on

build.xml /Run As /Ant Build. Rename the project using Refactor/Rename to

whatever name you choose for your project and Refresh/Clean/Build the project.

http://mercurial.selenic.com/wiki/Download

SL4A

39

8. Next, double-click on raw and Refactor/Rename to change the name script.py to

your_script_name.py and then double-click

src/com.dummy.fooforandroid/Script.java and change R.raw.script to

R.raw.your_script_name and save.

9. Double-click on src and Refactor/Rename to change the package name

com.dummy.fooforandroid to your.package.name. Do the same for gen.

10. Now highlight your project then click on Project/Properties/Android. Select your

android target and click OK.

11. Towards the bottom of your project list, double click on AndroidManifest.xml.

Change the package name in the manifest from com.dummy.fooforandroid to

your.package.name. Change your minSdkVersion from "4" to suit your android

target (this is the API level for your android target shown in

Project/Preferences/Android). Uncomment the permissions you require your

application to have (take off <!-- at the start and --> at the end). Set Debug to

False.

12. Right click on your_script_name and open with text editor. Delete the default

script, replace it with your own and save. Then Clean/Build/Refresh your project

and run it. If all goes well click on File/Export to export your application as an

apk.

13. Click Next.

14. Every Android Application must be digitally signed before it can be installed.

Select Create new Keystore, if this is the first time you have been through this

process.

15. Select a file to hold your keystore and it must be password protected.

16. Click Next. Notice the validity field. You may create a key valid for any number

of years, from 1 to 99.

17. The final dialog box allows you to specify where you want the .apk file to reside.

Click Finish.

18. One may use Eclipse or the ADB tool to test/install the .apk file. To install using

ADB, open a terminal window, navigate to the .apk destination directory and type

the following:

adb install distributable_file.apk

