
http://www.tutorialspoint.com/asp.net/asp.net_server_controls.htm Copyright © tutorialspoint.com

ASP.NET - SERVER CONTROLSASP.NET - SERVER CONTROLS

Controls are small building blocks of the graphical user interface, which include text boxes,
buttons, check boxes, list boxes, labels, and numerous other tools. Using these tools, the users can
enter data, make selections and indicate their preferences.

Controls are also used for structural jobs, like validation, data access, security, creating master
pages, and data manipulation.

ASP.NET uses five types of web controls, which are:

HTML controls
HTML Server controls
ASP.NET Server controls
ASP.NET Ajax Server controls
User controls and custom controls

ASP.NET server controls are the primary controls used in ASP.NET. These controls can be grouped
into the following categories:

Validation controls - These are used to validate user input and they work by running client-
side script.

Data source controls - These controls provides data binding to different data sources.

Data view controls - These are various lists and tables, which can bind to data from data
sources for displaying.

Personalization controls - These are used for personalization of a page according to the
user preferences, based on user information.

Login and security controls - These controls provide user authentication.

Master pages - These controls provide consistent layout and interface throughout the
application.

Navigation controls - These controls help in navigation. For example, menus, tree view etc.

Rich controls - These controls implement special features. For example, AdRotator,
FileUpload, and Calendar control.

The syntax for using server controls is:

<asp:controlType ID ="ControlID" runat="server" Property1=value1 [Property2=value2] />

In addition, visual studio has the following features, to help produce in error-free coding:

Dragging and dropping of controls in design view
IntelliSense feature that displays and auto-completes the properties
The properties window to set the property values directly

Properties of the Server Controls
ASP.NET server controls with a visual aspect are derived from the WebControl class and inherit all
the properties, events, and methods of this class.

The WebControl class itself and some other server controls that are not visually rendered are
derived from the System.Web.UI.Control class. For example, PlaceHolder control or XML control.

http://www.tutorialspoint.com/asp.net/asp.net_server_controls.htm

ASP.Net server controls inherit all properties, events, and methods of the WebControl and
System.Web.UI.Control class.

The following table shows the inherited properties, common to all server controls:

Property Description

AccessKey Pressing this key with the Alt key moves focus to the control.

Attributes It is the collection of arbitrary attributes forrenderingonly that do not
correspond to properties on the control.

BackColor Background color.

BindingContainer The control that contains this control's data binding.

BorderColor Border color.

BorderStyle Border style.

BorderWidth Border width.

CausesValidation Indicates if it causes validation.

ChildControlCreated It indicates whether the server control's child controls have been
created.

ClientID Control ID for HTML markup.

Context The HttpContext object associated with the server control.

Controls Collection of all controls contained within the control.

ControlStyle The style of the Web server control.

CssClass CSS class

DataItemContainer Gets a reference to the naming container if the naming container
implements IDataItemContainer.

DataKeysContainer Gets a reference to the naming container if the naming container
implements IDataKeysControl.

DesignMode It indicates whether the control is being used on a design surface.

DisabledCssClass Gets or sets the CSS class to apply to the rendered HTML element
when the control is disabled.

Enabled Indicates whether the control is grayed out.

EnableTheming Indicates whether theming applies to the control.

EnableViewState Indicates whether the view state of the control is maintained.

Events Gets a list of event handler delegates for the control.

Font Font.

Forecolor Foreground color.

HasAttributes Indicates whether the control has attributes set.

HasChildViewState Indicates whether the current server control's child controls have
any saved view-state settings.

Height Height in pixels or %.

ID Identifier for the control.

IsChildControlStateCleared Indicates whether controls contained within this control have
control state.

IsEnabled Gets a value indicating whether the control is enabled.

IsTrackingViewState It indicates whether the server control is saving changes to its view
state.

IsViewStateEnabled It indicates whether view state is enabled for this control.

LoadViewStateById It indicates whether the control participates in loading its view
state by ID instead of index.

Page Page containing the control.

Parent Parent control.

RenderingCompatibility It specifies the ASP.NET version that the rendered HTML will be
compatible with.

Site The container that hosts the current control when rendered on a
design surface.

SkinID Gets or sets the skin to apply to the control.

Style Gets a collection of text attributes that will be rendered as a style
attribute on the outer tag of the Web server control.

TabIndex Gets or sets the tab index of the Web server control.

TagKey Gets the HtmlTextWriterTag value that corresponds to this Web
server control.

TagName Gets the name of the control tag.

TemplateControl The template that contains this control.

TemplateSourceDirectory Gets the virtual directory of the page or control containing this
control.

ToolTip Gets or sets the text displayed when the mouse pointer hovers
over the web server control.

UniqueID Unique identifier.

ViewState Gets a dictionary of state information that saves and restores the
view state of a server control across multiple requests for the
same page.

ViewStateIgnoreCase It indicates whether the StateBag object is case-insensitive.

ViewStateMode Gets or sets the view-state mode of this control.

Visible It indicates whether a server control is visible.

Width Gets or sets the width of the Web server control.

Methods of the Server Controls
The following table provides the methods of the server controls:

Method Description

AddAttributesToRender Adds HTML attributes and styles that need to be rendered to the
specified HtmlTextWriterTag.

AddedControl Called after a child control is added to the Controls collection of
the control object.

AddParsedSubObject Notifies the server control that an element, either XML or HTML,
was parsed, and adds the element to the server control's control
collection.

ApplyStyleSheetSkin Applies the style properties defined in the page style sheet to the
control.

ClearCachedClientID Infrastructure. Sets the cached ClientID value to null.

ClearChildControlState Deletes the control-state information for the server control's child
controls.

ClearChildState Deletes the view-state and control-state information for all the
server control's child controls.

ClearChildViewState Deletes the view-state information for all the server control's child
controls.

CreateChildControls Used in creating child controls.

CreateControlCollection Creates a new ControlCollection object to hold the child controls.

CreateControlStyle Creates the style object that is used to implement all style related
properties.

DataBind Binds a data source to the server control and all its child controls.

DataBindBoolean Binds a data source to the server control and all its child controls
with an option to raise the DataBinding event.

DataBindChildren Binds a data source to the server control's child controls.

Dispose Enables a server control to perform final clean up before it is
released from memory.

EnsureChildControls Determines whether the server control contains child controls. If it
does not, it creates child controls.

EnsureID Creates an identifier for controls that do not have an identifier.

EqualsObject Determines whether the specified object is equal to the current
object.

Finalize Allows an object to attempt to free resources and perform other
cleanup operations before the object is reclaimed by garbage
collection.

FindControlString Searches the current naming container for a server control with
the specified id parameter.

FindControlString, Int32 Searches the current naming container for a server control with
the specified id and an integer.

Focus Sets input focus to a control.

GetDesignModeState Gets design-time data for a control.

GetType Gets the type of the current instance.

GetUniqueIDRelativeTo Returns the prefixed portion of the UniqueID property of the
specified control.

HasControls Determines if the server control contains any child controls.

HasEvents Indicates whether events are registered for the control or any child
controls.

IsLiteralContent Determines if the server control holds only literal content.

LoadControlState Restores control-state information.

LoadViewState Restores view-state information.

MapPathSecure Retrieves the physical path that a virtual path, either absolute or
relative, maps to.

MemberwiseClone Creates a shallow copy of the current object.

MergeStyle Copies any nonblank elements of the specified style to the web
control, but does not overwrite any existing style elements of the
control.

OnBubbleEvent Determines whether the event for the server control is passed up
the page's UI server control hierarchy.

OnDataBinding Raises the data binding event.

OnInit Raises the Init event.

OnLoad Raises the Load event.

OnPreRender Raises the PreRender event.

OnUnload Raises the Unload event.

OpenFile Gets a Stream used to read a file.

RemovedControl Called after a child control is removed from the controls collection
of the control object.

Render Renders the control to the specified HTML writer.

RenderBeginTag Renders the HTML opening tag of the control to the specified
writer.

RenderChildren Outputs the contents of a server control's children to a provided
HtmlTextWriter object, which writes the contents to be rendered
on the client.

RenderContents Renders the contents of the control to the specified writer.

RenderControlHtmlTextWriter Outputs server control content to a provided HtmlTextWriter
object and stores tracing information about the control if tracing is
enabled.

RenderEndTag Renders the HTML closing tag of the control into the specified
writer.

ResolveAdapter Gets the control adapter responsible for rendering the specified
control.

SaveControlState Saves any server control state changes that have occurred since
the time the page was posted back to the server.

SaveViewState Saves any state that was modified after the TrackViewState
method was invoked.

SetDesignModeState Sets design-time data for a control.

ToString Returns a string that represents the current object.

TrackViewState Causes the control to track changes to its view state so that they
can be stored in the object's view state property.

Example
Let us look at a particular server control - a tree view control. A Tree view control comes under
navigation controls. Other Navigation controls are: Menu control and SiteMapPath control.

Add a tree view control on the page. Select Edit Nodes... from the tasks. Edit each of the nodes
using the Tree view node editor as shown:

Once you have created the nodes, it looks like the following in design view:

The AutoFormat... task allows you to format the tree view as shown:

Add a label control and a text box control on the page and name them lblmessage and txtmessage
respectively.

Write a few lines of code to ensure that when a particular node is selected, the label control
displays the node text and the text box displays all child nodes under it, if any. The code behind the
file should look like this:

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;

using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

namespace eventdemo {
 public partial class treeviewdemo : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 txtmessage.Text = " ";
 }

 protected void TreeView1_SelectedNodeChanged(object sender, EventArgs e) {

 txtmessage.Text = " ";
 lblmessage.Text = "Selected node changed to: " + TreeView1.SelectedNode.Text;
 TreeNodeCollection childnodes = TreeView1.SelectedNode.ChildNodes;

 if(childnodes != null) {
 txtmessage.Text = " ";

 foreach (TreeNode t in childnodes) {
 txtmessage.Text += t.Value;
 }
 }
 }
 }
}

Execute the page to see the effects. You will be able to expand and collapse the nodes.

Loading [MathJax]/jax/output/HTML-CSS/jax.js

